Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2rexfrabdioph Structured version   Unicode version

Theorem 2rexfrabdioph 26894
Description: Diophantine set builder for existential quantifier, explicit substitution, two variables. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
rexfrabdioph.1  |-  M  =  ( N  +  1 )
rexfrabdioph.2  |-  L  =  ( M  +  1 )
Assertion
Ref Expression
2rexfrabdioph  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... L ) )  | 
[. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. [. ( t `  L )  /  w ]. ph }  e.  (Dioph `  L ) )  ->  { u  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. v  e.  NN0  E. w  e.  NN0  ph }  e.  (Dioph `  N )
)
Distinct variable groups:    u, t,
v, w, L    t, M, u, v, w    t, N, u, v, w    ph, t
Allowed substitution hints:    ph( w, v, u)

Proof of Theorem 2rexfrabdioph
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 vex 2965 . . . . . . 7  |-  a  e. 
_V
21resex 5215 . . . . . 6  |-  ( a  |`  ( 1 ... N
) )  e.  _V
3 fvex 5771 . . . . . 6  |-  ( a `
 M )  e. 
_V
42, 32sbcrex 26881 . . . . 5  |-  ( [. ( a  |`  (
1 ... N ) )  /  u ]. [. (
a `  M )  /  v ]. E. w  e.  NN0  ph  <->  E. w  e.  NN0  [. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. ph )
54a1i 11 . . . 4  |-  ( a  e.  ( NN0  ^m  ( 1 ... M
) )  ->  ( [. ( a  |`  (
1 ... N ) )  /  u ]. [. (
a `  M )  /  v ]. E. w  e.  NN0  ph  <->  E. w  e.  NN0  [. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. ph ) )
65rabbiia 2952 . . 3  |-  { a  e.  ( NN0  ^m  ( 1 ... M
) )  |  [. ( a  |`  (
1 ... N ) )  /  u ]. [. (
a `  M )  /  v ]. E. w  e.  NN0  ph }  =  { a  e.  ( NN0  ^m  ( 1 ... M ) )  |  E. w  e. 
NN0  [. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. ph }
7 rexfrabdioph.1 . . . . . 6  |-  M  =  ( N  +  1 )
8 peano2nn0 10291 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
97, 8syl5eqel 2526 . . . . 5  |-  ( N  e.  NN0  ->  M  e. 
NN0 )
109adantr 453 . . . 4  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... L ) )  | 
[. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. [. ( t `  L )  /  w ]. ph }  e.  (Dioph `  L ) )  ->  M  e.  NN0 )
11 sbcrot3 26885 . . . . . . . . 9  |-  ( [. ( t `  L
)  /  w ]. [. ( a  |`  (
1 ... N ) )  /  u ]. [. (
a `  M )  /  v ]. ph  <->  [. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. [. ( t `  L )  /  w ]. ph )
1211sbcbii 3225 . . . . . . . 8  |-  ( [. ( t  |`  (
1 ... M ) )  /  a ]. [. (
t `  L )  /  w ]. [. (
a  |`  ( 1 ... N ) )  /  u ]. [. ( a `
 M )  / 
v ]. ph  <->  [. ( t  |`  ( 1 ... M
) )  /  a ]. [. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. [. ( t `  L )  /  w ]. ph )
13 reseq1 5169 . . . . . . . . . 10  |-  ( a  =  ( t  |`  ( 1 ... M
) )  ->  (
a  |`  ( 1 ... N ) )  =  ( ( t  |`  ( 1 ... M
) )  |`  (
1 ... N ) ) )
1413sbccomieg 26887 . . . . . . . . 9  |-  ( [. ( t  |`  (
1 ... M ) )  /  a ]. [. (
a  |`  ( 1 ... N ) )  /  u ]. [. ( a `
 M )  / 
v ]. [. ( t `
 L )  /  w ]. ph  <->  [. ( ( t  |`  ( 1 ... M ) )  |`  ( 1 ... N
) )  /  u ]. [. ( t  |`  ( 1 ... M
) )  /  a ]. [. ( a `  M )  /  v ]. [. ( t `  L )  /  w ]. ph )
15 fzssp1 11126 . . . . . . . . . . . 12  |-  ( 1 ... N )  C_  ( 1 ... ( N  +  1 ) )
167oveq2i 6121 . . . . . . . . . . . 12  |-  ( 1 ... M )  =  ( 1 ... ( N  +  1 ) )
1715, 16sseqtr4i 3367 . . . . . . . . . . 11  |-  ( 1 ... N )  C_  ( 1 ... M
)
18 resabs1 5204 . . . . . . . . . . 11  |-  ( ( 1 ... N ) 
C_  ( 1 ... M )  ->  (
( t  |`  (
1 ... M ) )  |`  ( 1 ... N
) )  =  ( t  |`  ( 1 ... N ) ) )
19 dfsbcq 3169 . . . . . . . . . . 11  |-  ( ( ( t  |`  (
1 ... M ) )  |`  ( 1 ... N
) )  =  ( t  |`  ( 1 ... N ) )  ->  ( [. (
( t  |`  (
1 ... M ) )  |`  ( 1 ... N
) )  /  u ]. [. ( t  |`  ( 1 ... M
) )  /  a ]. [. ( a `  M )  /  v ]. [. ( t `  L )  /  w ]. ph  <->  [. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t  |`  ( 1 ... M
) )  /  a ]. [. ( a `  M )  /  v ]. [. ( t `  L )  /  w ]. ph ) )
2017, 18, 19mp2b 10 . . . . . . . . . 10  |-  ( [. ( ( t  |`  ( 1 ... M
) )  |`  (
1 ... N ) )  /  u ]. [. (
t  |`  ( 1 ... M ) )  / 
a ]. [. ( a `
 M )  / 
v ]. [. ( t `
 L )  /  w ]. ph  <->  [. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t  |`  ( 1 ... M
) )  /  a ]. [. ( a `  M )  /  v ]. [. ( t `  L )  /  w ]. ph )
21 vex 2965 . . . . . . . . . . . . . 14  |-  t  e. 
_V
2221resex 5215 . . . . . . . . . . . . 13  |-  ( t  |`  ( 1 ... M
) )  e.  _V
233ax-gen 1556 . . . . . . . . . . . . 13  |-  A. a
( a `  M
)  e.  _V
24 fveq1 5756 . . . . . . . . . . . . . 14  |-  ( a  =  ( t  |`  ( 1 ... M
) )  ->  (
a `  M )  =  ( ( t  |`  ( 1 ... M
) ) `  M
) )
2524sbcco3gOLD 3672 . . . . . . . . . . . . 13  |-  ( ( ( t  |`  (
1 ... M ) )  e.  _V  /\  A. a ( a `  M )  e.  _V )  ->  ( [. (
t  |`  ( 1 ... M ) )  / 
a ]. [. ( a `
 M )  / 
v ]. [. ( t `
 L )  /  w ]. ph  <->  [. ( ( t  |`  ( 1 ... M ) ) `
 M )  / 
v ]. [. ( t `
 L )  /  w ]. ph ) )
2622, 23, 25mp2an 655 . . . . . . . . . . . 12  |-  ( [. ( t  |`  (
1 ... M ) )  /  a ]. [. (
a `  M )  /  v ]. [. (
t `  L )  /  w ]. ph  <->  [. ( ( t  |`  ( 1 ... M ) ) `
 M )  / 
v ]. [. ( t `
 L )  /  w ]. ph )
27 nn0p1nn 10290 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
287, 27syl5eqel 2526 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  M  e.  NN )
29 elfz1end 11112 . . . . . . . . . . . . . 14  |-  ( M  e.  NN  <->  M  e.  ( 1 ... M
) )
3028, 29sylib 190 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  M  e.  ( 1 ... M
) )
31 fvres 5774 . . . . . . . . . . . . 13  |-  ( M  e.  ( 1 ... M )  ->  (
( t  |`  (
1 ... M ) ) `
 M )  =  ( t `  M
) )
32 dfsbcq 3169 . . . . . . . . . . . . 13  |-  ( ( ( t  |`  (
1 ... M ) ) `
 M )  =  ( t `  M
)  ->  ( [. ( ( t  |`  ( 1 ... M
) ) `  M
)  /  v ]. [. ( t `  L
)  /  w ]. ph  <->  [. ( t `  M
)  /  v ]. [. ( t `  L
)  /  w ]. ph ) )
3330, 31, 323syl 19 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( [. ( ( t  |`  ( 1 ... M
) ) `  M
)  /  v ]. [. ( t `  L
)  /  w ]. ph  <->  [. ( t `  M
)  /  v ]. [. ( t `  L
)  /  w ]. ph ) )
3426, 33syl5bb 250 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ( [. ( t  |`  (
1 ... M ) )  /  a ]. [. (
a `  M )  /  v ]. [. (
t `  L )  /  w ]. ph  <->  [. ( t `
 M )  / 
v ]. [. ( t `
 L )  /  w ]. ph ) )
3534sbcbidv 3224 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( [. ( t  |`  (
1 ... N ) )  /  u ]. [. (
t  |`  ( 1 ... M ) )  / 
a ]. [. ( a `
 M )  / 
v ]. [. ( t `
 L )  /  w ]. ph  <->  [. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. [. ( t `  L )  /  w ]. ph ) )
3620, 35syl5bb 250 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( [. ( ( t  |`  ( 1 ... M
) )  |`  (
1 ... N ) )  /  u ]. [. (
t  |`  ( 1 ... M ) )  / 
a ]. [. ( a `
 M )  / 
v ]. [. ( t `
 L )  /  w ]. ph  <->  [. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. [. ( t `  L )  /  w ]. ph ) )
3714, 36syl5bb 250 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( [. ( t  |`  (
1 ... M ) )  /  a ]. [. (
a  |`  ( 1 ... N ) )  /  u ]. [. ( a `
 M )  / 
v ]. [. ( t `
 L )  /  w ]. ph  <->  [. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. [. ( t `  L )  /  w ]. ph ) )
3812, 37syl5rbb 251 . . . . . . 7  |-  ( N  e.  NN0  ->  ( [. ( t  |`  (
1 ... N ) )  /  u ]. [. (
t `  M )  /  v ]. [. (
t `  L )  /  w ]. ph  <->  [. ( t  |`  ( 1 ... M
) )  /  a ]. [. ( t `  L )  /  w ]. [. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. ph ) )
3938rabbidv 2954 . . . . . 6  |-  ( N  e.  NN0  ->  { t  e.  ( NN0  ^m  ( 1 ... L
) )  |  [. ( t  |`  (
1 ... N ) )  /  u ]. [. (
t `  M )  /  v ]. [. (
t `  L )  /  w ]. ph }  =  { t  e.  ( NN0  ^m  ( 1 ... L ) )  |  [. ( t  |`  ( 1 ... M
) )  /  a ]. [. ( t `  L )  /  w ]. [. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. ph } )
4039eleq1d 2508 . . . . 5  |-  ( N  e.  NN0  ->  ( { t  e.  ( NN0 
^m  ( 1 ... L ) )  | 
[. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. [. ( t `  L )  /  w ]. ph }  e.  (Dioph `  L )  <->  { t  e.  ( NN0  ^m  (
1 ... L ) )  |  [. ( t  |`  ( 1 ... M
) )  /  a ]. [. ( t `  L )  /  w ]. [. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. ph }  e.  (Dioph `  L ) ) )
4140biimpa 472 . . . 4  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... L ) )  | 
[. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. [. ( t `  L )  /  w ]. ph }  e.  (Dioph `  L ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... L ) )  |  [. ( t  |`  ( 1 ... M
) )  /  a ]. [. ( t `  L )  /  w ]. [. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. ph }  e.  (Dioph `  L ) )
42 rexfrabdioph.2 . . . . 5  |-  L  =  ( M  +  1 )
4342rexfrabdioph 26893 . . . 4  |-  ( ( M  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... L ) )  | 
[. ( t  |`  ( 1 ... M
) )  /  a ]. [. ( t `  L )  /  w ]. [. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. ph }  e.  (Dioph `  L ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... M ) )  |  E. w  e. 
NN0  [. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. ph }  e.  (Dioph `  M ) )
4410, 41, 43syl2anc 644 . . 3  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... L ) )  | 
[. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. [. ( t `  L )  /  w ]. ph }  e.  (Dioph `  L ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... M ) )  |  E. w  e. 
NN0  [. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. ph }  e.  (Dioph `  M ) )
456, 44syl5eqel 2526 . 2  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... L ) )  | 
[. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. [. ( t `  L )  /  w ]. ph }  e.  (Dioph `  L ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... M ) )  |  [. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. E. w  e.  NN0  ph }  e.  (Dioph `  M ) )
467rexfrabdioph 26893 . 2  |-  ( ( N  e.  NN0  /\  { a  e.  ( NN0 
^m  ( 1 ... M ) )  | 
[. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. E. w  e.  NN0  ph }  e.  (Dioph `  M ) )  ->  { u  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. v  e.  NN0  E. w  e.  NN0  ph }  e.  (Dioph `  N )
)
4745, 46syldan 458 1  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... L ) )  | 
[. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. [. ( t `  L )  /  w ]. ph }  e.  (Dioph `  L ) )  ->  { u  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. v  e.  NN0  E. w  e.  NN0  ph }  e.  (Dioph `  N )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360   A.wal 1550    = wceq 1653    e. wcel 1727   E.wrex 2712   {crab 2715   _Vcvv 2962   [.wsbc 3167    C_ wss 3306    |` cres 4909   ` cfv 5483  (class class class)co 6110    ^m cmap 7047   1c1 9022    + caddc 9024   NNcn 10031   NN0cn0 10252   ...cfz 11074  Diophcdioph 26851
This theorem is referenced by:  3rexfrabdioph  26895  4rexfrabdioph  26896  6rexfrabdioph  26897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-inf2 7625  ax-cnex 9077  ax-resscn 9078  ax-1cn 9079  ax-icn 9080  ax-addcl 9081  ax-addrcl 9082  ax-mulcl 9083  ax-mulrcl 9084  ax-mulcom 9085  ax-addass 9086  ax-mulass 9087  ax-distr 9088  ax-i2m1 9089  ax-1ne0 9090  ax-1rid 9091  ax-rnegex 9092  ax-rrecex 9093  ax-cnre 9094  ax-pre-lttri 9095  ax-pre-lttrn 9096  ax-pre-ltadd 9097  ax-pre-mulgt0 9098
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rmo 2719  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-int 4075  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-of 6334  df-1st 6378  df-2nd 6379  df-riota 6578  df-recs 6662  df-rdg 6697  df-1o 6753  df-oadd 6757  df-er 6934  df-map 7049  df-en 7139  df-dom 7140  df-sdom 7141  df-fin 7142  df-card 7857  df-cda 8079  df-pnf 9153  df-mnf 9154  df-xr 9155  df-ltxr 9156  df-le 9157  df-sub 9324  df-neg 9325  df-nn 10032  df-n0 10253  df-z 10314  df-uz 10520  df-fz 11075  df-hash 11650  df-mzpcl 26818  df-mzp 26819  df-dioph 26852
  Copyright terms: Public domain W3C validator