MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sq Structured version   Unicode version

Theorem 2sq 21150
Description: All primes of the form  4 k  +  1 are sums of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.)
Assertion
Ref Expression
2sq  |-  ( ( P  e.  Prime  /\  ( P  mod  4 )  =  1 )  ->  E. x  e.  ZZ  E. y  e.  ZZ  P  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
Distinct variable group:    x, y, P

Proof of Theorem 2sq
Dummy variables  a 
b  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2435 . . 3  |-  ran  (
w  e.  ZZ [
_i ]  |->  ( ( abs `  w ) ^ 2 ) )  =  ran  ( w  e.  ZZ [ _i ]  |->  ( ( abs `  w ) ^ 2 ) )
2 oveq1 6080 . . . . . . 7  |-  ( a  =  x  ->  (
a  gcd  b )  =  ( x  gcd  b ) )
32eqeq1d 2443 . . . . . 6  |-  ( a  =  x  ->  (
( a  gcd  b
)  =  1  <->  (
x  gcd  b )  =  1 ) )
4 oveq1 6080 . . . . . . . 8  |-  ( a  =  x  ->  (
a ^ 2 )  =  ( x ^
2 ) )
54oveq1d 6088 . . . . . . 7  |-  ( a  =  x  ->  (
( a ^ 2 )  +  ( b ^ 2 ) )  =  ( ( x ^ 2 )  +  ( b ^ 2 ) ) )
65eqeq2d 2446 . . . . . 6  |-  ( a  =  x  ->  (
z  =  ( ( a ^ 2 )  +  ( b ^
2 ) )  <->  z  =  ( ( x ^
2 )  +  ( b ^ 2 ) ) ) )
73, 6anbi12d 692 . . . . 5  |-  ( a  =  x  ->  (
( ( a  gcd  b )  =  1  /\  z  =  ( ( a ^ 2 )  +  ( b ^ 2 ) ) )  <->  ( ( x  gcd  b )  =  1  /\  z  =  ( ( x ^
2 )  +  ( b ^ 2 ) ) ) ) )
8 oveq2 6081 . . . . . . 7  |-  ( b  =  y  ->  (
x  gcd  b )  =  ( x  gcd  y ) )
98eqeq1d 2443 . . . . . 6  |-  ( b  =  y  ->  (
( x  gcd  b
)  =  1  <->  (
x  gcd  y )  =  1 ) )
10 oveq1 6080 . . . . . . . 8  |-  ( b  =  y  ->  (
b ^ 2 )  =  ( y ^
2 ) )
1110oveq2d 6089 . . . . . . 7  |-  ( b  =  y  ->  (
( x ^ 2 )  +  ( b ^ 2 ) )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
1211eqeq2d 2446 . . . . . 6  |-  ( b  =  y  ->  (
z  =  ( ( x ^ 2 )  +  ( b ^
2 ) )  <->  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )
139, 12anbi12d 692 . . . . 5  |-  ( b  =  y  ->  (
( ( x  gcd  b )  =  1  /\  z  =  ( ( x ^ 2 )  +  ( b ^ 2 ) ) )  <->  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) ) )
147, 13cbvrex2v 2933 . . . 4  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  (
( a  gcd  b
)  =  1  /\  z  =  ( ( a ^ 2 )  +  ( b ^
2 ) ) )  <->  E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) ) )
1514abbii 2547 . . 3  |-  { z  |  E. a  e.  ZZ  E. b  e.  ZZ  ( ( a  gcd  b )  =  1  /\  z  =  ( ( a ^
2 )  +  ( b ^ 2 ) ) ) }  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
161, 152sqlem11 21149 . 2  |-  ( ( P  e.  Prime  /\  ( P  mod  4 )  =  1 )  ->  P  e.  ran  ( w  e.  ZZ [ _i ]  |->  ( ( abs `  w
) ^ 2 ) ) )
1712sqlem2 21138 . 2  |-  ( P  e.  ran  ( w  e.  ZZ [ _i ]  |->  ( ( abs `  w ) ^ 2 ) )  <->  E. x  e.  ZZ  E. y  e.  ZZ  P  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
1816, 17sylib 189 1  |-  ( ( P  e.  Prime  /\  ( P  mod  4 )  =  1 )  ->  E. x  e.  ZZ  E. y  e.  ZZ  P  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   {cab 2421   E.wrex 2698    e. cmpt 4258   ran crn 4871   ` cfv 5446  (class class class)co 6073   1c1 8981    + caddc 8983   2c2 10039   4c4 10041   ZZcz 10272    mod cmo 11240   ^cexp 11372   abscabs 12029    gcd cgcd 12996   Primecprime 13069   ZZ [ _i ]cgz 13287
This theorem is referenced by:  2sqb  21152
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7586  ax-cnex 9036  ax-resscn 9037  ax-1cn 9038  ax-icn 9039  ax-addcl 9040  ax-addrcl 9041  ax-mulcl 9042  ax-mulrcl 9043  ax-mulcom 9044  ax-addass 9045  ax-mulass 9046  ax-distr 9047  ax-i2m1 9048  ax-1ne0 9049  ax-1rid 9050  ax-rnegex 9051  ax-rrecex 9052  ax-cnre 9053  ax-pre-lttri 9054  ax-pre-lttrn 9055  ax-pre-ltadd 9056  ax-pre-mulgt0 9057  ax-pre-sup 9058  ax-addf 9059  ax-mulf 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-ofr 6298  df-1st 6341  df-2nd 6342  df-tpos 6471  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-ec 6899  df-qs 6903  df-map 7012  df-pm 7013  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-oi 7469  df-card 7816  df-cda 8038  df-pnf 9112  df-mnf 9113  df-xr 9114  df-ltxr 9115  df-le 9116  df-sub 9283  df-neg 9284  df-div 9668  df-nn 9991  df-2 10048  df-3 10049  df-4 10050  df-5 10051  df-6 10052  df-7 10053  df-8 10054  df-9 10055  df-10 10056  df-n0 10212  df-z 10273  df-dec 10373  df-uz 10479  df-q 10565  df-rp 10603  df-fz 11034  df-fzo 11126  df-fl 11192  df-mod 11241  df-seq 11314  df-exp 11373  df-hash 11609  df-cj 11894  df-re 11895  df-im 11896  df-sqr 12030  df-abs 12031  df-dvds 12843  df-gcd 12997  df-prm 13070  df-phi 13145  df-pc 13201  df-gz 13288  df-struct 13461  df-ndx 13462  df-slot 13463  df-base 13464  df-sets 13465  df-ress 13466  df-plusg 13532  df-mulr 13533  df-starv 13534  df-sca 13535  df-vsca 13536  df-tset 13538  df-ple 13539  df-ds 13541  df-unif 13542  df-hom 13543  df-cco 13544  df-prds 13661  df-pws 13663  df-0g 13717  df-gsum 13718  df-imas 13724  df-divs 13725  df-mre 13801  df-mrc 13802  df-acs 13804  df-mnd 14680  df-mhm 14728  df-submnd 14729  df-grp 14802  df-minusg 14803  df-sbg 14804  df-mulg 14805  df-subg 14931  df-nsg 14932  df-eqg 14933  df-ghm 14994  df-cntz 15106  df-cmn 15404  df-abl 15405  df-mgp 15639  df-rng 15653  df-cring 15654  df-ur 15655  df-oppr 15718  df-dvdsr 15736  df-unit 15737  df-invr 15767  df-rnghom 15809  df-drng 15827  df-field 15828  df-subrg 15856  df-lmod 15942  df-lss 15999  df-lsp 16038  df-sra 16234  df-rgmod 16235  df-lidl 16236  df-rsp 16237  df-2idl 16293  df-nzr 16319  df-rlreg 16333  df-domn 16334  df-idom 16335  df-assa 16362  df-asp 16363  df-ascl 16364  df-psr 16407  df-mvr 16408  df-mpl 16409  df-evls 16410  df-evl 16411  df-opsr 16415  df-psr1 16566  df-vr1 16567  df-ply1 16568  df-evl1 16570  df-coe1 16571  df-cnfld 16694  df-zrh 16772  df-zn 16775  df-mdeg 19968  df-deg1 19969  df-mon1 20043  df-uc1p 20044  df-q1p 20045  df-r1p 20046  df-lgs 21069
  Copyright terms: Public domain W3C validator