MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqblem Unicode version

Theorem 2sqblem 21122
Description: The converse to 2sq 21121. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sqb.1  |-  ( ph  ->  ( P  e.  Prime  /\  P  =/=  2 ) )
2sqb.2  |-  ( ph  ->  ( X  e.  ZZ  /\  Y  e.  ZZ ) )
2sqb.3  |-  ( ph  ->  P  =  ( ( X ^ 2 )  +  ( Y ^
2 ) ) )
2sqb.4  |-  ( ph  ->  A  e.  ZZ )
2sqb.5  |-  ( ph  ->  B  e.  ZZ )
2sqb.6  |-  ( ph  ->  ( P  gcd  Y
)  =  ( ( P  x.  A )  +  ( Y  x.  B ) ) )
Assertion
Ref Expression
2sqblem  |-  ( ph  ->  ( P  mod  4
)  =  1 )

Proof of Theorem 2sqblem
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 2sqb.1 . . . . . 6  |-  ( ph  ->  ( P  e.  Prime  /\  P  =/=  2 ) )
21simpld 446 . . . . 5  |-  ( ph  ->  P  e.  Prime )
3 nprmdvds1 13074 . . . . 5  |-  ( P  e.  Prime  ->  -.  P  ||  1 )
42, 3syl 16 . . . 4  |-  ( ph  ->  -.  P  ||  1
)
5 prmz 13046 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  ZZ )
62, 5syl 16 . . . . 5  |-  ( ph  ->  P  e.  ZZ )
7 1z 10275 . . . . 5  |-  1  e.  ZZ
8 dvdsnegb 12830 . . . . 5  |-  ( ( P  e.  ZZ  /\  1  e.  ZZ )  ->  ( P  ||  1  <->  P 
||  -u 1 ) )
96, 7, 8sylancl 644 . . . 4  |-  ( ph  ->  ( P  ||  1  <->  P 
||  -u 1 ) )
104, 9mtbid 292 . . 3  |-  ( ph  ->  -.  P  ||  -u 1
)
11 2sqb.2 . . . . . 6  |-  ( ph  ->  ( X  e.  ZZ  /\  Y  e.  ZZ ) )
1211simpld 446 . . . . 5  |-  ( ph  ->  X  e.  ZZ )
13 2sqb.5 . . . . 5  |-  ( ph  ->  B  e.  ZZ )
1412, 13zmulcld 10345 . . . 4  |-  ( ph  ->  ( X  x.  B
)  e.  ZZ )
15 zsqcl 11415 . . . . . . . . 9  |-  ( B  e.  ZZ  ->  ( B ^ 2 )  e.  ZZ )
1613, 15syl 16 . . . . . . . 8  |-  ( ph  ->  ( B ^ 2 )  e.  ZZ )
17 dvdsmul1 12834 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  ( B ^ 2 )  e.  ZZ )  ->  P  ||  ( P  x.  ( B ^ 2 ) ) )
186, 16, 17syl2anc 643 . . . . . . 7  |-  ( ph  ->  P  ||  ( P  x.  ( B ^
2 ) ) )
1911simprd 450 . . . . . . . . . . . . 13  |-  ( ph  ->  Y  e.  ZZ )
2019, 13zmulcld 10345 . . . . . . . . . . . 12  |-  ( ph  ->  ( Y  x.  B
)  e.  ZZ )
21 zsqcl 11415 . . . . . . . . . . . 12  |-  ( ( Y  x.  B )  e.  ZZ  ->  (
( Y  x.  B
) ^ 2 )  e.  ZZ )
2220, 21syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Y  x.  B ) ^ 2 )  e.  ZZ )
23 peano2zm 10284 . . . . . . . . . . 11  |-  ( ( ( Y  x.  B
) ^ 2 )  e.  ZZ  ->  (
( ( Y  x.  B ) ^ 2 )  -  1 )  e.  ZZ )
2422, 23syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( Y  x.  B ) ^
2 )  -  1 )  e.  ZZ )
2524zcnd 10340 . . . . . . . . 9  |-  ( ph  ->  ( ( ( Y  x.  B ) ^
2 )  -  1 )  e.  CC )
26 zsqcl 11415 . . . . . . . . . . . 12  |-  ( ( X  x.  B )  e.  ZZ  ->  (
( X  x.  B
) ^ 2 )  e.  ZZ )
2714, 26syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( ( X  x.  B ) ^ 2 )  e.  ZZ )
2827peano2zd 10342 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( X  x.  B ) ^
2 )  +  1 )  e.  ZZ )
2928zcnd 10340 . . . . . . . . 9  |-  ( ph  ->  ( ( ( X  x.  B ) ^
2 )  +  1 )  e.  CC )
3025, 29addcomd 9232 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( Y  x.  B ) ^ 2 )  - 
1 )  +  ( ( ( X  x.  B ) ^ 2 )  +  1 ) )  =  ( ( ( ( X  x.  B ) ^ 2 )  +  1 )  +  ( ( ( Y  x.  B ) ^ 2 )  - 
1 ) ) )
3127zcnd 10340 . . . . . . . . 9  |-  ( ph  ->  ( ( X  x.  B ) ^ 2 )  e.  CC )
32 ax-1cn 9012 . . . . . . . . . 10  |-  1  e.  CC
3332a1i 11 . . . . . . . . 9  |-  ( ph  ->  1  e.  CC )
3422zcnd 10340 . . . . . . . . 9  |-  ( ph  ->  ( ( Y  x.  B ) ^ 2 )  e.  CC )
3531, 33, 34ppncand 9415 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( X  x.  B ) ^ 2 )  +  1 )  +  ( ( ( Y  x.  B ) ^ 2 )  -  1 ) )  =  ( ( ( X  x.  B
) ^ 2 )  +  ( ( Y  x.  B ) ^
2 ) ) )
36 zsqcl 11415 . . . . . . . . . . . 12  |-  ( X  e.  ZZ  ->  ( X ^ 2 )  e.  ZZ )
3712, 36syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( X ^ 2 )  e.  ZZ )
3837zcnd 10340 . . . . . . . . . 10  |-  ( ph  ->  ( X ^ 2 )  e.  CC )
39 zsqcl 11415 . . . . . . . . . . . 12  |-  ( Y  e.  ZZ  ->  ( Y ^ 2 )  e.  ZZ )
4019, 39syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( Y ^ 2 )  e.  ZZ )
4140zcnd 10340 . . . . . . . . . 10  |-  ( ph  ->  ( Y ^ 2 )  e.  CC )
4216zcnd 10340 . . . . . . . . . 10  |-  ( ph  ->  ( B ^ 2 )  e.  CC )
4338, 41, 42adddird 9077 . . . . . . . . 9  |-  ( ph  ->  ( ( ( X ^ 2 )  +  ( Y ^ 2 ) )  x.  ( B ^ 2 ) )  =  ( ( ( X ^ 2 )  x.  ( B ^
2 ) )  +  ( ( Y ^
2 )  x.  ( B ^ 2 ) ) ) )
44 2sqb.3 . . . . . . . . . 10  |-  ( ph  ->  P  =  ( ( X ^ 2 )  +  ( Y ^
2 ) ) )
4544oveq1d 6063 . . . . . . . . 9  |-  ( ph  ->  ( P  x.  ( B ^ 2 ) )  =  ( ( ( X ^ 2 )  +  ( Y ^
2 ) )  x.  ( B ^ 2 ) ) )
4612zcnd 10340 . . . . . . . . . . 11  |-  ( ph  ->  X  e.  CC )
4713zcnd 10340 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  CC )
4846, 47sqmuld 11498 . . . . . . . . . 10  |-  ( ph  ->  ( ( X  x.  B ) ^ 2 )  =  ( ( X ^ 2 )  x.  ( B ^
2 ) ) )
4919zcnd 10340 . . . . . . . . . . 11  |-  ( ph  ->  Y  e.  CC )
5049, 47sqmuld 11498 . . . . . . . . . 10  |-  ( ph  ->  ( ( Y  x.  B ) ^ 2 )  =  ( ( Y ^ 2 )  x.  ( B ^
2 ) ) )
5148, 50oveq12d 6066 . . . . . . . . 9  |-  ( ph  ->  ( ( ( X  x.  B ) ^
2 )  +  ( ( Y  x.  B
) ^ 2 ) )  =  ( ( ( X ^ 2 )  x.  ( B ^ 2 ) )  +  ( ( Y ^ 2 )  x.  ( B ^ 2 ) ) ) )
5243, 45, 513eqtr4rd 2455 . . . . . . . 8  |-  ( ph  ->  ( ( ( X  x.  B ) ^
2 )  +  ( ( Y  x.  B
) ^ 2 ) )  =  ( P  x.  ( B ^
2 ) ) )
5330, 35, 523eqtrd 2448 . . . . . . 7  |-  ( ph  ->  ( ( ( ( Y  x.  B ) ^ 2 )  - 
1 )  +  ( ( ( X  x.  B ) ^ 2 )  +  1 ) )  =  ( P  x.  ( B ^
2 ) ) )
5418, 53breqtrrd 4206 . . . . . 6  |-  ( ph  ->  P  ||  ( ( ( ( Y  x.  B ) ^ 2 )  -  1 )  +  ( ( ( X  x.  B ) ^ 2 )  +  1 ) ) )
55 2sqb.4 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  ZZ )
56 dvdsmul1 12834 . . . . . . . . . . . 12  |-  ( ( P  e.  ZZ  /\  A  e.  ZZ )  ->  P  ||  ( P  x.  A ) )
576, 55, 56syl2anc 643 . . . . . . . . . . 11  |-  ( ph  ->  P  ||  ( P  x.  A ) )
586, 55zmulcld 10345 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  x.  A
)  e.  ZZ )
59 dvdsnegb 12830 . . . . . . . . . . . 12  |-  ( ( P  e.  ZZ  /\  ( P  x.  A
)  e.  ZZ )  ->  ( P  ||  ( P  x.  A
)  <->  P  ||  -u ( P  x.  A )
) )
606, 58, 59syl2anc 643 . . . . . . . . . . 11  |-  ( ph  ->  ( P  ||  ( P  x.  A )  <->  P 
||  -u ( P  x.  A ) ) )
6157, 60mpbid 202 . . . . . . . . . 10  |-  ( ph  ->  P  ||  -u ( P  x.  A )
)
6220zcnd 10340 . . . . . . . . . . . 12  |-  ( ph  ->  ( Y  x.  B
)  e.  CC )
63 negsubdi2 9324 . . . . . . . . . . . 12  |-  ( ( 1  e.  CC  /\  ( Y  x.  B
)  e.  CC )  ->  -u ( 1  -  ( Y  x.  B
) )  =  ( ( Y  x.  B
)  -  1 ) )
6432, 62, 63sylancr 645 . . . . . . . . . . 11  |-  ( ph  -> 
-u ( 1  -  ( Y  x.  B
) )  =  ( ( Y  x.  B
)  -  1 ) )
6519zred 10339 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  Y  e.  RR )
66 absresq 12070 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( Y  e.  RR  ->  (
( abs `  Y
) ^ 2 )  =  ( Y ^
2 ) )
6765, 66syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( abs `  Y
) ^ 2 )  =  ( Y ^
2 ) )
6865resqcld 11512 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( Y ^ 2 )  e.  RR )
69 prmnn 13045 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( P  e.  Prime  ->  P  e.  NN )
702, 69syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  P  e.  NN )
7170nnred 9979 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  P  e.  RR )
7271resqcld 11512 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( P ^ 2 )  e.  RR )
73 zsqcl2 11422 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( X  e.  ZZ  ->  ( X ^ 2 )  e. 
NN0 )
7412, 73syl 16 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( X ^ 2 )  e.  NN0 )
75 nn0addge2 10231 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( Y ^ 2 )  e.  RR  /\  ( X ^ 2 )  e.  NN0 )  -> 
( Y ^ 2 )  <_  ( ( X ^ 2 )  +  ( Y ^ 2 ) ) )
7668, 74, 75syl2anc 643 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( Y ^ 2 )  <_  ( ( X ^ 2 )  +  ( Y ^ 2 ) ) )
7776, 44breqtrrd 4206 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( Y ^ 2 )  <_  P )
786zcnd 10340 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  P  e.  CC )
7978exp1d 11481 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( P ^ 1 )  =  P )
807a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  1  e.  ZZ )
81 2z 10276 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  2  e.  ZZ
8281a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  2  e.  ZZ )
83 prmuz2 13060 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
842, 83syl 16 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  P  e.  ( ZZ>= ` 
2 ) )
85 eluz2b2 10512 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  NN  /\  1  < 
P ) )
8685simprbi 451 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( P  e.  ( ZZ>= `  2
)  ->  1  <  P )
8784, 86syl 16 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  1  <  P )
88 1lt2 10106 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  1  <  2
8988a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  1  <  2 )
90 ltexp2a 11394 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( P  e.  RR  /\  1  e.  ZZ  /\  2  e.  ZZ )  /\  ( 1  <  P  /\  1  <  2
) )  ->  ( P ^ 1 )  < 
( P ^ 2 ) )
9171, 80, 82, 87, 89, 90syl32anc 1192 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( P ^ 1 )  <  ( P ^ 2 ) )
9279, 91eqbrtrrd 4202 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  P  <  ( P ^ 2 ) )
9368, 71, 72, 77, 92lelttrd 9192 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( Y ^ 2 )  <  ( P ^ 2 ) )
9467, 93eqbrtrd 4200 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( abs `  Y
) ^ 2 )  <  ( P ^
2 ) )
9549abscld 12201 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( abs `  Y
)  e.  RR )
9649absge0d 12209 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  0  <_  ( abs `  Y ) )
9770nnnn0d 10238 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  P  e.  NN0 )
9897nn0ge0d 10241 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  0  <_  P )
9995, 71, 96, 98lt2sqd 11520 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( abs `  Y
)  <  P  <->  ( ( abs `  Y ) ^
2 )  <  ( P ^ 2 ) ) )
10094, 99mpbird 224 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( abs `  Y
)  <  P )
1016zred 10339 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  P  e.  RR )
10295, 101ltnled 9184 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( abs `  Y
)  <  P  <->  -.  P  <_  ( abs `  Y
) ) )
103100, 102mpbid 202 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  -.  P  <_  ( abs `  Y ) )
104 sqnprm 13061 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( X  e.  ZZ  ->  -.  ( X ^ 2 )  e.  Prime )
10512, 104syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  -.  ( X ^
2 )  e.  Prime )
10649abs00ad 12058 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( abs `  Y
)  =  0  <->  Y  =  0 ) )
10744, 2eqeltrrd 2487 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( ( X ^
2 )  +  ( Y ^ 2 ) )  e.  Prime )
108 sq0i 11437 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( Y  =  0  ->  ( Y ^ 2 )  =  0 )
109108oveq2d 6064 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( Y  =  0  ->  (
( X ^ 2 )  +  ( Y ^ 2 ) )  =  ( ( X ^ 2 )  +  0 ) )
110109eleq1d 2478 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( Y  =  0  ->  (
( ( X ^
2 )  +  ( Y ^ 2 ) )  e.  Prime  <->  ( ( X ^ 2 )  +  0 )  e.  Prime ) )
111107, 110syl5ibcom 212 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( Y  =  0  ->  ( ( X ^ 2 )  +  0 )  e.  Prime ) )
11238addid1d 9230 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( ( X ^
2 )  +  0 )  =  ( X ^ 2 ) )
113112eleq1d 2478 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( ( ( X ^ 2 )  +  0 )  e.  Prime  <->  ( X ^ 2 )  e. 
Prime ) )
114111, 113sylibd 206 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( Y  =  0  ->  ( X ^
2 )  e.  Prime ) )
115106, 114sylbid 207 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( abs `  Y
)  =  0  -> 
( X ^ 2 )  e.  Prime )
)
116105, 115mtod 170 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  -.  ( abs `  Y
)  =  0 )
117 nn0abscl 12080 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( Y  e.  ZZ  ->  ( abs `  Y )  e. 
NN0 )
11819, 117syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( abs `  Y
)  e.  NN0 )
119 elnn0 10187 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( abs `  Y )  e.  NN0  <->  ( ( abs `  Y )  e.  NN  \/  ( abs `  Y
)  =  0 ) )
120118, 119sylib 189 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( abs `  Y
)  e.  NN  \/  ( abs `  Y )  =  0 ) )
121120ord 367 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( -.  ( abs `  Y )  e.  NN  ->  ( abs `  Y
)  =  0 ) )
122116, 121mt3d 119 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( abs `  Y
)  e.  NN )
123 dvdsle 12858 . . . . . . . . . . . . . . . . . . 19  |-  ( ( P  e.  ZZ  /\  ( abs `  Y )  e.  NN )  -> 
( P  ||  ( abs `  Y )  ->  P  <_  ( abs `  Y
) ) )
1246, 122, 123syl2anc 643 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( P  ||  ( abs `  Y )  ->  P  <_  ( abs `  Y
) ) )
125103, 124mtod 170 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  -.  P  ||  ( abs `  Y ) )
126 dvdsabsb 12832 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  ZZ  /\  Y  e.  ZZ )  ->  ( P  ||  Y  <->  P 
||  ( abs `  Y
) ) )
1276, 19, 126syl2anc 643 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( P  ||  Y  <->  P 
||  ( abs `  Y
) ) )
128125, 127mtbird 293 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  -.  P  ||  Y
)
129 coprm 13063 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  Prime  /\  Y  e.  ZZ )  ->  ( -.  P  ||  Y  <->  ( P  gcd  Y )  =  1 ) )
1302, 19, 129syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( -.  P  ||  Y 
<->  ( P  gcd  Y
)  =  1 ) )
131128, 130mpbid 202 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( P  gcd  Y
)  =  1 )
132 2sqb.6 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( P  gcd  Y
)  =  ( ( P  x.  A )  +  ( Y  x.  B ) ) )
133131, 132eqtr3d 2446 . . . . . . . . . . . . . 14  |-  ( ph  ->  1  =  ( ( P  x.  A )  +  ( Y  x.  B ) ) )
134133oveq1d 6063 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 1  -  ( Y  x.  B )
)  =  ( ( ( P  x.  A
)  +  ( Y  x.  B ) )  -  ( Y  x.  B ) ) )
13558zcnd 10340 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( P  x.  A
)  e.  CC )
136135, 62pncand 9376 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( P  x.  A )  +  ( Y  x.  B
) )  -  ( Y  x.  B )
)  =  ( P  x.  A ) )
137134, 136eqtrd 2444 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1  -  ( Y  x.  B )
)  =  ( P  x.  A ) )
138137negeqd 9264 . . . . . . . . . . 11  |-  ( ph  -> 
-u ( 1  -  ( Y  x.  B
) )  =  -u ( P  x.  A
) )
13964, 138eqtr3d 2446 . . . . . . . . . 10  |-  ( ph  ->  ( ( Y  x.  B )  -  1 )  =  -u ( P  x.  A )
)
14061, 139breqtrrd 4206 . . . . . . . . 9  |-  ( ph  ->  P  ||  ( ( Y  x.  B )  -  1 ) )
14120peano2zd 10342 . . . . . . . . . 10  |-  ( ph  ->  ( ( Y  x.  B )  +  1 )  e.  ZZ )
142 peano2zm 10284 . . . . . . . . . . 11  |-  ( ( Y  x.  B )  e.  ZZ  ->  (
( Y  x.  B
)  -  1 )  e.  ZZ )
14320, 142syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( ( Y  x.  B )  -  1 )  e.  ZZ )
144 dvdsmultr2 12848 . . . . . . . . . 10  |-  ( ( P  e.  ZZ  /\  ( ( Y  x.  B )  +  1 )  e.  ZZ  /\  ( ( Y  x.  B )  -  1 )  e.  ZZ )  ->  ( P  ||  ( ( Y  x.  B )  -  1 )  ->  P  ||  (
( ( Y  x.  B )  +  1 )  x.  ( ( Y  x.  B )  -  1 ) ) ) )
1456, 141, 143, 144syl3anc 1184 . . . . . . . . 9  |-  ( ph  ->  ( P  ||  (
( Y  x.  B
)  -  1 )  ->  P  ||  (
( ( Y  x.  B )  +  1 )  x.  ( ( Y  x.  B )  -  1 ) ) ) )
146140, 145mpd 15 . . . . . . . 8  |-  ( ph  ->  P  ||  ( ( ( Y  x.  B
)  +  1 )  x.  ( ( Y  x.  B )  - 
1 ) ) )
147 sq1 11439 . . . . . . . . . 10  |-  ( 1 ^ 2 )  =  1
148147oveq2i 6059 . . . . . . . . 9  |-  ( ( ( Y  x.  B
) ^ 2 )  -  ( 1 ^ 2 ) )  =  ( ( ( Y  x.  B ) ^
2 )  -  1 )
149 subsq 11451 . . . . . . . . . 10  |-  ( ( ( Y  x.  B
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( Y  x.  B ) ^
2 )  -  (
1 ^ 2 ) )  =  ( ( ( Y  x.  B
)  +  1 )  x.  ( ( Y  x.  B )  - 
1 ) ) )
15062, 32, 149sylancl 644 . . . . . . . . 9  |-  ( ph  ->  ( ( ( Y  x.  B ) ^
2 )  -  (
1 ^ 2 ) )  =  ( ( ( Y  x.  B
)  +  1 )  x.  ( ( Y  x.  B )  - 
1 ) ) )
151148, 150syl5eqr 2458 . . . . . . . 8  |-  ( ph  ->  ( ( ( Y  x.  B ) ^
2 )  -  1 )  =  ( ( ( Y  x.  B
)  +  1 )  x.  ( ( Y  x.  B )  - 
1 ) ) )
152146, 151breqtrrd 4206 . . . . . . 7  |-  ( ph  ->  P  ||  ( ( ( Y  x.  B
) ^ 2 )  -  1 ) )
153 dvdsadd2b 12855 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  ( ( ( X  x.  B ) ^
2 )  +  1 )  e.  ZZ  /\  ( ( ( ( Y  x.  B ) ^ 2 )  - 
1 )  e.  ZZ  /\  P  ||  ( ( ( Y  x.  B
) ^ 2 )  -  1 ) ) )  ->  ( P  ||  ( ( ( X  x.  B ) ^
2 )  +  1 )  <->  P  ||  ( ( ( ( Y  x.  B ) ^ 2 )  -  1 )  +  ( ( ( X  x.  B ) ^ 2 )  +  1 ) ) ) )
1546, 28, 24, 152, 153syl112anc 1188 . . . . . 6  |-  ( ph  ->  ( P  ||  (
( ( X  x.  B ) ^ 2 )  +  1 )  <-> 
P  ||  ( (
( ( Y  x.  B ) ^ 2 )  -  1 )  +  ( ( ( X  x.  B ) ^ 2 )  +  1 ) ) ) )
15554, 154mpbird 224 . . . . 5  |-  ( ph  ->  P  ||  ( ( ( X  x.  B
) ^ 2 )  +  1 ) )
156 subneg 9314 . . . . . 6  |-  ( ( ( ( X  x.  B ) ^ 2 )  e.  CC  /\  1  e.  CC )  ->  ( ( ( X  x.  B ) ^
2 )  -  -u 1
)  =  ( ( ( X  x.  B
) ^ 2 )  +  1 ) )
15731, 32, 156sylancl 644 . . . . 5  |-  ( ph  ->  ( ( ( X  x.  B ) ^
2 )  -  -u 1
)  =  ( ( ( X  x.  B
) ^ 2 )  +  1 ) )
158155, 157breqtrrd 4206 . . . 4  |-  ( ph  ->  P  ||  ( ( ( X  x.  B
) ^ 2 )  -  -u 1 ) )
159 oveq1 6055 . . . . . . 7  |-  ( x  =  ( X  x.  B )  ->  (
x ^ 2 )  =  ( ( X  x.  B ) ^
2 ) )
160159oveq1d 6063 . . . . . 6  |-  ( x  =  ( X  x.  B )  ->  (
( x ^ 2 )  -  -u 1
)  =  ( ( ( X  x.  B
) ^ 2 )  -  -u 1 ) )
161160breq2d 4192 . . . . 5  |-  ( x  =  ( X  x.  B )  ->  ( P  ||  ( ( x ^ 2 )  -  -u 1 )  <->  P  ||  (
( ( X  x.  B ) ^ 2 )  -  -u 1
) ) )
162161rspcev 3020 . . . 4  |-  ( ( ( X  x.  B
)  e.  ZZ  /\  P  ||  ( ( ( X  x.  B ) ^ 2 )  -  -u 1 ) )  ->  E. x  e.  ZZ  P  ||  ( ( x ^ 2 )  -  -u 1 ) )
16314, 158, 162syl2anc 643 . . 3  |-  ( ph  ->  E. x  e.  ZZ  P  ||  ( ( x ^ 2 )  -  -u 1 ) )
164 znegcl 10277 . . . . 5  |-  ( 1  e.  ZZ  ->  -u 1  e.  ZZ )
1657, 164ax-mp 8 . . . 4  |-  -u 1  e.  ZZ
166 eldifsn 3895 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  <->  ( P  e.  Prime  /\  P  =/=  2 ) )
1671, 166sylibr 204 . . . 4  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
168 lgsqr 21091 . . . 4  |-  ( (
-u 1  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( -u 1  / L P
)  =  1  <->  ( -.  P  ||  -u 1  /\  E. x  e.  ZZ  P  ||  ( ( x ^ 2 )  -  -u 1 ) ) ) )
169165, 167, 168sylancr 645 . . 3  |-  ( ph  ->  ( ( -u 1  / L P )  =  1  <->  ( -.  P  ||  -u 1  /\  E. x  e.  ZZ  P  ||  (
( x ^ 2 )  -  -u 1
) ) ) )
17010, 163, 169mpbir2and 889 . 2  |-  ( ph  ->  ( -u 1  / L P )  =  1 )
171 m1lgs 21107 . . 3  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( -u 1  / L P )  =  1  <->  ( P  mod  4 )  =  1 ) )
172167, 171syl 16 . 2  |-  ( ph  ->  ( ( -u 1  / L P )  =  1  <->  ( P  mod  4 )  =  1 ) )
173170, 172mpbid 202 1  |-  ( ph  ->  ( P  mod  4
)  =  1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2575   E.wrex 2675    \ cdif 3285   {csn 3782   class class class wbr 4180   ` cfv 5421  (class class class)co 6048   CCcc 8952   RRcr 8953   0cc0 8954   1c1 8955    + caddc 8957    x. cmul 8959    < clt 9084    <_ cle 9085    - cmin 9255   -ucneg 9256   NNcn 9964   2c2 10013   4c4 10015   NN0cn0 10185   ZZcz 10246   ZZ>=cuz 10452    mod cmo 11213   ^cexp 11345   abscabs 12002    || cdivides 12815    gcd cgcd 12969   Primecprime 13042    / Lclgs 21039
This theorem is referenced by:  2sqb  21123
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-inf2 7560  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031  ax-pre-sup 9032  ax-addf 9033  ax-mulf 9034
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-iin 4064  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-se 4510  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-of 6272  df-ofr 6273  df-1st 6316  df-2nd 6317  df-tpos 6446  df-riota 6516  df-recs 6600  df-rdg 6635  df-1o 6691  df-2o 6692  df-oadd 6695  df-er 6872  df-ec 6874  df-qs 6878  df-map 6987  df-pm 6988  df-ixp 7031  df-en 7077  df-dom 7078  df-sdom 7079  df-fin 7080  df-sup 7412  df-oi 7443  df-card 7790  df-cda 8012  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-div 9642  df-nn 9965  df-2 10022  df-3 10023  df-4 10024  df-5 10025  df-6 10026  df-7 10027  df-8 10028  df-9 10029  df-10 10030  df-n0 10186  df-z 10247  df-dec 10347  df-uz 10453  df-q 10539  df-rp 10577  df-fz 11008  df-fzo 11099  df-fl 11165  df-mod 11214  df-seq 11287  df-exp 11346  df-hash 11582  df-cj 11867  df-re 11868  df-im 11869  df-sqr 12003  df-abs 12004  df-dvds 12816  df-gcd 12970  df-prm 13043  df-phi 13118  df-pc 13174  df-struct 13434  df-ndx 13435  df-slot 13436  df-base 13437  df-sets 13438  df-ress 13439  df-plusg 13505  df-mulr 13506  df-starv 13507  df-sca 13508  df-vsca 13509  df-tset 13511  df-ple 13512  df-ds 13514  df-unif 13515  df-hom 13516  df-cco 13517  df-prds 13634  df-pws 13636  df-0g 13690  df-gsum 13691  df-imas 13697  df-divs 13698  df-mre 13774  df-mrc 13775  df-acs 13777  df-mnd 14653  df-mhm 14701  df-submnd 14702  df-grp 14775  df-minusg 14776  df-sbg 14777  df-mulg 14778  df-subg 14904  df-nsg 14905  df-eqg 14906  df-ghm 14967  df-cntz 15079  df-cmn 15377  df-abl 15378  df-mgp 15612  df-rng 15626  df-cring 15627  df-ur 15628  df-oppr 15691  df-dvdsr 15709  df-unit 15710  df-invr 15740  df-rnghom 15782  df-drng 15800  df-field 15801  df-subrg 15829  df-lmod 15915  df-lss 15972  df-lsp 16011  df-sra 16207  df-rgmod 16208  df-lidl 16209  df-rsp 16210  df-2idl 16266  df-nzr 16292  df-rlreg 16306  df-domn 16307  df-idom 16308  df-assa 16335  df-asp 16336  df-ascl 16337  df-psr 16380  df-mvr 16381  df-mpl 16382  df-evls 16383  df-evl 16384  df-opsr 16388  df-psr1 16539  df-vr1 16540  df-ply1 16541  df-evl1 16543  df-coe1 16544  df-cnfld 16667  df-zrh 16745  df-zn 16748  df-mdeg 19939  df-deg1 19940  df-mon1 20014  df-uc1p 20015  df-q1p 20016  df-r1p 20017  df-lgs 21040
  Copyright terms: Public domain W3C validator