MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem1 Unicode version

Theorem 2sqlem1 20618
Description: Lemma for 2sq 20631. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypothesis
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ [ _i ]  |->  ( ( abs `  w
) ^ 2 ) )
Assertion
Ref Expression
2sqlem1  |-  ( A  e.  S  <->  E. x  e.  ZZ [ _i ]  A  =  ( ( abs `  x ) ^
2 ) )
Distinct variable groups:    x, w    x, A    x, S
Allowed substitution hints:    A( w)    S( w)

Proof of Theorem 2sqlem1
StepHypRef Expression
1 2sq.1 . . 3  |-  S  =  ran  ( w  e.  ZZ [ _i ]  |->  ( ( abs `  w
) ^ 2 ) )
21eleq2i 2360 . 2  |-  ( A  e.  S  <->  A  e.  ran  ( w  e.  ZZ [ _i ]  |->  ( ( abs `  w ) ^ 2 ) ) )
3 fveq2 5541 . . . . 5  |-  ( w  =  x  ->  ( abs `  w )  =  ( abs `  x
) )
43oveq1d 5889 . . . 4  |-  ( w  =  x  ->  (
( abs `  w
) ^ 2 )  =  ( ( abs `  x ) ^ 2 ) )
54cbvmptv 4127 . . 3  |-  ( w  e.  ZZ [ _i ]  |->  ( ( abs `  w ) ^ 2 ) )  =  ( x  e.  ZZ [
_i ]  |->  ( ( abs `  x ) ^ 2 ) )
6 ovex 5899 . . 3  |-  ( ( abs `  x ) ^ 2 )  e. 
_V
75, 6elrnmpti 4946 . 2  |-  ( A  e.  ran  ( w  e.  ZZ [ _i ]  |->  ( ( abs `  w ) ^ 2 ) )  <->  E. x  e.  ZZ [ _i ]  A  =  ( ( abs `  x ) ^
2 ) )
82, 7bitri 240 1  |-  ( A  e.  S  <->  E. x  e.  ZZ [ _i ]  A  =  ( ( abs `  x ) ^
2 ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    = wceq 1632    e. wcel 1696   E.wrex 2557    e. cmpt 4093   ran crn 4706   ` cfv 5271  (class class class)co 5874   2c2 9811   ^cexp 11120   abscabs 11735   ZZ [ _i ]cgz 12992
This theorem is referenced by:  2sqlem2  20619  mul2sq  20620  2sqlem3  20621  2sqlem9  20628  2sqlem10  20629
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-cnv 4713  df-dm 4715  df-rn 4716  df-iota 5235  df-fv 5279  df-ov 5877
  Copyright terms: Public domain W3C validator