MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem10 Structured version   Unicode version

Theorem 2sqlem10 21160
Description: Lemma for 2sq 21162. Every factor of a "proper" sum of two squares (where the summands are coprime) is a sum of two squares. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ [ _i ]  |->  ( ( abs `  w
) ^ 2 ) )
2sqlem7.2  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
Assertion
Ref Expression
2sqlem10  |-  ( ( A  e.  Y  /\  B  e.  NN  /\  B  ||  A )  ->  B  e.  S )
Distinct variable groups:    x, w, y, z    x, A, y, z    x, B, y   
x, S, y, z   
x, Y, y
Allowed substitution hints:    A( w)    B( z, w)    S( w)    Y( z, w)

Proof of Theorem 2sqlem10
Dummy variables  a 
b  n  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfz1end 11083 . . . . 5  |-  ( B  e.  NN  <->  B  e.  ( 1 ... B
) )
21biimpi 188 . . . 4  |-  ( B  e.  NN  ->  B  e.  ( 1 ... B
) )
3 oveq2 6091 . . . . . 6  |-  ( m  =  1  ->  (
1 ... m )  =  ( 1 ... 1
) )
43raleqdv 2912 . . . . 5  |-  ( m  =  1  ->  ( A. b  e.  (
1 ... m ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  <->  A. b  e.  ( 1 ... 1
) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) ) )
5 oveq2 6091 . . . . . 6  |-  ( m  =  n  ->  (
1 ... m )  =  ( 1 ... n
) )
65raleqdv 2912 . . . . 5  |-  ( m  =  n  ->  ( A. b  e.  (
1 ... m ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  <->  A. b  e.  ( 1 ... n
) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) ) )
7 oveq2 6091 . . . . . 6  |-  ( m  =  ( n  + 
1 )  ->  (
1 ... m )  =  ( 1 ... (
n  +  1 ) ) )
87raleqdv 2912 . . . . 5  |-  ( m  =  ( n  + 
1 )  ->  ( A. b  e.  (
1 ... m ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  <->  A. b  e.  ( 1 ... (
n  +  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) ) )
9 oveq2 6091 . . . . . 6  |-  ( m  =  B  ->  (
1 ... m )  =  ( 1 ... B
) )
109raleqdv 2912 . . . . 5  |-  ( m  =  B  ->  ( A. b  e.  (
1 ... m ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  <->  A. b  e.  ( 1 ... B
) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) ) )
11 elfz1eq 11070 . . . . . . . . 9  |-  ( b  e.  ( 1 ... 1 )  ->  b  =  1 )
12 1z 10313 . . . . . . . . . . . 12  |-  1  e.  ZZ
13 zgz 13303 . . . . . . . . . . . 12  |-  ( 1  e.  ZZ  ->  1  e.  ZZ [ _i ]
)
1412, 13ax-mp 8 . . . . . . . . . . 11  |-  1  e.  ZZ [ _i ]
15 sq1 11478 . . . . . . . . . . . 12  |-  ( 1 ^ 2 )  =  1
1615eqcomi 2442 . . . . . . . . . . 11  |-  1  =  ( 1 ^ 2 )
17 fveq2 5730 . . . . . . . . . . . . . . 15  |-  ( x  =  1  ->  ( abs `  x )  =  ( abs `  1
) )
18 abs1 12104 . . . . . . . . . . . . . . 15  |-  ( abs `  1 )  =  1
1917, 18syl6eq 2486 . . . . . . . . . . . . . 14  |-  ( x  =  1  ->  ( abs `  x )  =  1 )
2019oveq1d 6098 . . . . . . . . . . . . 13  |-  ( x  =  1  ->  (
( abs `  x
) ^ 2 )  =  ( 1 ^ 2 ) )
2120eqeq2d 2449 . . . . . . . . . . . 12  |-  ( x  =  1  ->  (
1  =  ( ( abs `  x ) ^ 2 )  <->  1  =  ( 1 ^ 2 ) ) )
2221rspcev 3054 . . . . . . . . . . 11  |-  ( ( 1  e.  ZZ [
_i ]  /\  1  =  ( 1 ^ 2 ) )  ->  E. x  e.  ZZ [ _i ]  1  =  ( ( abs `  x
) ^ 2 ) )
2314, 16, 22mp2an 655 . . . . . . . . . 10  |-  E. x  e.  ZZ [ _i ] 
1  =  ( ( abs `  x ) ^ 2 )
24 2sq.1 . . . . . . . . . . 11  |-  S  =  ran  ( w  e.  ZZ [ _i ]  |->  ( ( abs `  w
) ^ 2 ) )
25242sqlem1 21149 . . . . . . . . . 10  |-  ( 1  e.  S  <->  E. x  e.  ZZ [ _i ] 
1  =  ( ( abs `  x ) ^ 2 ) )
2623, 25mpbir 202 . . . . . . . . 9  |-  1  e.  S
2711, 26syl6eqel 2526 . . . . . . . 8  |-  ( b  e.  ( 1 ... 1 )  ->  b  e.  S )
2827a1d 24 . . . . . . 7  |-  ( b  e.  ( 1 ... 1 )  ->  (
b  ||  a  ->  b  e.  S ) )
2928ralrimivw 2792 . . . . . 6  |-  ( b  e.  ( 1 ... 1 )  ->  A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )
3029rgen 2773 . . . . 5  |-  A. b  e.  ( 1 ... 1
) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
)
31 2sqlem7.2 . . . . . . . . . . . . 13  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
32 simplr 733 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )
33 nncn 10010 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN  ->  n  e.  CC )
3433ad2antrr 708 . . . . . . . . . . . . . . . . 17  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  n  e.  CC )
35 ax-1cn 9050 . . . . . . . . . . . . . . . . 17  |-  1  e.  CC
36 pncan 9313 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  CC  /\  1  e.  CC )  ->  ( ( n  + 
1 )  -  1 )  =  n )
3734, 35, 36sylancl 645 . . . . . . . . . . . . . . . 16  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  ( ( n  +  1 )  - 
1 )  =  n )
3837oveq2d 6099 . . . . . . . . . . . . . . 15  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  ( 1 ... ( ( n  + 
1 )  -  1 ) )  =  ( 1 ... n ) )
3938raleqdv 2912 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  ( A. b  e.  ( 1 ... (
( n  +  1 )  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
)  <->  A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) ) )
4032, 39mpbird 225 . . . . . . . . . . . . 13  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  A. b  e.  ( 1 ... ( ( n  +  1 )  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )
41 simprr 735 . . . . . . . . . . . . 13  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  ( n  + 
1 )  ||  m
)
42 peano2nn 10014 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (
n  +  1 )  e.  NN )
4342ad2antrr 708 . . . . . . . . . . . . 13  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  ( n  + 
1 )  e.  NN )
44 simprl 734 . . . . . . . . . . . . 13  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  m  e.  Y
)
4524, 31, 40, 41, 43, 442sqlem9 21159 . . . . . . . . . . . 12  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  ( m  e.  Y  /\  (
n  +  1 ) 
||  m ) )  ->  ( n  + 
1 )  e.  S
)
4645expr 600 . . . . . . . . . . 11  |-  ( ( ( n  e.  NN  /\ 
A. b  e.  ( 1 ... n ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )  /\  m  e.  Y )  ->  (
( n  +  1 )  ||  m  -> 
( n  +  1 )  e.  S ) )
4746ralrimiva 2791 . . . . . . . . . 10  |-  ( ( n  e.  NN  /\  A. b  e.  ( 1 ... n ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S ) )  ->  A. m  e.  Y  ( ( n  + 
1 )  ||  m  ->  ( n  +  1 )  e.  S ) )
4847ex 425 . . . . . . . . 9  |-  ( n  e.  NN  ->  ( A. b  e.  (
1 ... n ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  ->  A. m  e.  Y  ( ( n  + 
1 )  ||  m  ->  ( n  +  1 )  e.  S ) ) )
49 breq2 4218 . . . . . . . . . . 11  |-  ( a  =  m  ->  (
( n  +  1 )  ||  a  <->  ( n  +  1 )  ||  m ) )
5049imbi1d 310 . . . . . . . . . 10  |-  ( a  =  m  ->  (
( ( n  + 
1 )  ||  a  ->  ( n  +  1 )  e.  S )  <-> 
( ( n  + 
1 )  ||  m  ->  ( n  +  1 )  e.  S ) ) )
5150cbvralv 2934 . . . . . . . . 9  |-  ( A. a  e.  Y  (
( n  +  1 )  ||  a  -> 
( n  +  1 )  e.  S )  <->  A. m  e.  Y  ( ( n  + 
1 )  ||  m  ->  ( n  +  1 )  e.  S ) )
5248, 51syl6ibr 220 . . . . . . . 8  |-  ( n  e.  NN  ->  ( A. b  e.  (
1 ... n ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  ->  A. a  e.  Y  ( ( n  + 
1 )  ||  a  ->  ( n  +  1 )  e.  S ) ) )
53 ovex 6108 . . . . . . . . 9  |-  ( n  +  1 )  e. 
_V
54 breq1 4217 . . . . . . . . . . 11  |-  ( b  =  ( n  + 
1 )  ->  (
b  ||  a  <->  ( n  +  1 )  ||  a ) )
55 eleq1 2498 . . . . . . . . . . 11  |-  ( b  =  ( n  + 
1 )  ->  (
b  e.  S  <->  ( n  +  1 )  e.  S ) )
5654, 55imbi12d 313 . . . . . . . . . 10  |-  ( b  =  ( n  + 
1 )  ->  (
( b  ||  a  ->  b  e.  S )  <-> 
( ( n  + 
1 )  ||  a  ->  ( n  +  1 )  e.  S ) ) )
5756ralbidv 2727 . . . . . . . . 9  |-  ( b  =  ( n  + 
1 )  ->  ( A. a  e.  Y  ( b  ||  a  ->  b  e.  S )  <->  A. a  e.  Y  ( ( n  + 
1 )  ||  a  ->  ( n  +  1 )  e.  S ) ) )
5853, 57ralsn 3851 . . . . . . . 8  |-  ( A. b  e.  { (
n  +  1 ) } A. a  e.  Y  ( b  ||  a  ->  b  e.  S
)  <->  A. a  e.  Y  ( ( n  + 
1 )  ||  a  ->  ( n  +  1 )  e.  S ) )
5952, 58syl6ibr 220 . . . . . . 7  |-  ( n  e.  NN  ->  ( A. b  e.  (
1 ... n ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  ->  A. b  e.  { ( n  +  1 ) } A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) ) )
6059ancld 538 . . . . . 6  |-  ( n  e.  NN  ->  ( A. b  e.  (
1 ... n ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  -> 
( A. b  e.  ( 1 ... n
) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
)  /\  A. b  e.  { ( n  + 
1 ) } A. a  e.  Y  (
b  ||  a  ->  b  e.  S ) ) ) )
61 elnnuz 10524 . . . . . . . . 9  |-  ( n  e.  NN  <->  n  e.  ( ZZ>= `  1 )
)
62 fzsuc 11098 . . . . . . . . 9  |-  ( n  e.  ( ZZ>= `  1
)  ->  ( 1 ... ( n  + 
1 ) )  =  ( ( 1 ... n )  u.  {
( n  +  1 ) } ) )
6361, 62sylbi 189 . . . . . . . 8  |-  ( n  e.  NN  ->  (
1 ... ( n  + 
1 ) )  =  ( ( 1 ... n )  u.  {
( n  +  1 ) } ) )
6463raleqdv 2912 . . . . . . 7  |-  ( n  e.  NN  ->  ( A. b  e.  (
1 ... ( n  + 
1 ) ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  <->  A. b  e.  ( ( 1 ... n )  u.  {
( n  +  1 ) } ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S ) ) )
65 ralunb 3530 . . . . . . 7  |-  ( A. b  e.  ( (
1 ... n )  u. 
{ ( n  + 
1 ) } ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S )  <-> 
( A. b  e.  ( 1 ... n
) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
)  /\  A. b  e.  { ( n  + 
1 ) } A. a  e.  Y  (
b  ||  a  ->  b  e.  S ) ) )
6664, 65syl6bb 254 . . . . . 6  |-  ( n  e.  NN  ->  ( A. b  e.  (
1 ... ( n  + 
1 ) ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  <->  ( A. b  e.  ( 1 ... n ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  /\  A. b  e.  { ( n  +  1 ) } A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) ) ) )
6760, 66sylibrd 227 . . . . 5  |-  ( n  e.  NN  ->  ( A. b  e.  (
1 ... n ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  ->  A. b  e.  (
1 ... ( n  + 
1 ) ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S ) ) )
684, 6, 8, 10, 30, 67nnind 10020 . . . 4  |-  ( B  e.  NN  ->  A. b  e.  ( 1 ... B
) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) )
69 breq1 4217 . . . . . . 7  |-  ( b  =  B  ->  (
b  ||  a  <->  B  ||  a
) )
70 eleq1 2498 . . . . . . 7  |-  ( b  =  B  ->  (
b  e.  S  <->  B  e.  S ) )
7169, 70imbi12d 313 . . . . . 6  |-  ( b  =  B  ->  (
( b  ||  a  ->  b  e.  S )  <-> 
( B  ||  a  ->  B  e.  S ) ) )
7271ralbidv 2727 . . . . 5  |-  ( b  =  B  ->  ( A. a  e.  Y  ( b  ||  a  ->  b  e.  S )  <->  A. a  e.  Y  ( B  ||  a  ->  B  e.  S )
) )
7372rspcv 3050 . . . 4  |-  ( B  e.  ( 1 ... B )  ->  ( A. b  e.  (
1 ... B ) A. a  e.  Y  (
b  ||  a  ->  b  e.  S )  ->  A. a  e.  Y  ( B  ||  a  ->  B  e.  S )
) )
742, 68, 73sylc 59 . . 3  |-  ( B  e.  NN  ->  A. a  e.  Y  ( B  ||  a  ->  B  e.  S ) )
75 breq2 4218 . . . . 5  |-  ( a  =  A  ->  ( B  ||  a  <->  B  ||  A
) )
7675imbi1d 310 . . . 4  |-  ( a  =  A  ->  (
( B  ||  a  ->  B  e.  S )  <-> 
( B  ||  A  ->  B  e.  S ) ) )
7776rspcv 3050 . . 3  |-  ( A  e.  Y  ->  ( A. a  e.  Y  ( B  ||  a  ->  B  e.  S )  ->  ( B  ||  A  ->  B  e.  S ) ) )
7874, 77syl5 31 . 2  |-  ( A  e.  Y  ->  ( B  e.  NN  ->  ( B  ||  A  ->  B  e.  S )
) )
79783imp 1148 1  |-  ( ( A  e.  Y  /\  B  e.  NN  /\  B  ||  A )  ->  B  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   {cab 2424   A.wral 2707   E.wrex 2708    u. cun 3320   {csn 3816   class class class wbr 4214    e. cmpt 4268   ran crn 4881   ` cfv 5456  (class class class)co 6083   CCcc 8990   1c1 8993    + caddc 8995    - cmin 9293   NNcn 10002   2c2 10051   ZZcz 10284   ZZ>=cuz 10490   ...cfz 11045   ^cexp 11384   abscabs 12041    || cdivides 12854    gcd cgcd 13008   ZZ [ _i ]cgz 13299
This theorem is referenced by:  2sqlem11  21161
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069  ax-pre-sup 9070
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-2o 6727  df-oadd 6730  df-er 6907  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-sup 7448  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-3 10061  df-n0 10224  df-z 10285  df-uz 10491  df-rp 10615  df-fz 11046  df-fl 11204  df-mod 11253  df-seq 11326  df-exp 11385  df-cj 11906  df-re 11907  df-im 11908  df-sqr 12042  df-abs 12043  df-dvds 12855  df-gcd 13009  df-prm 13082  df-gz 13300
  Copyright terms: Public domain W3C validator