![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 2times | Unicode version |
Description: Two times a number. (Contributed by NM, 10-Oct-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
2times |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 10018 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | oveq1i 6054 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | ax-1cn 9008 |
. . . . 5
![]() ![]() ![]() ![]() | |
4 | 3 | a1i 11 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | id 20 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 4, 4, 5 | adddird 9073 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 2, 6 | syl5eq 2452 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | mulid2 9049 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | 8, 8 | oveq12d 6062 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 7, 9 | eqtrd 2440 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem is referenced by: times2 10060 2timesi 10061 2halves 10156 halfaddsub 10161 avglt2 10166 2timesd 10170 expubnd 11399 subsq2 11448 absmax 12092 sinmul 12732 sin2t 12737 cos2t 12738 sadadd2lem2 12921 pythagtriplem4 13152 pythagtriplem14 13161 pythagtriplem16 13163 cncph 22277 pellexlem2 26787 acongrep 26939 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1552 ax-5 1563 ax-17 1623 ax-9 1662 ax-8 1683 ax-6 1740 ax-7 1745 ax-11 1757 ax-12 1946 ax-ext 2389 ax-resscn 9007 ax-1cn 9008 ax-icn 9009 ax-addcl 9010 ax-mulcl 9012 ax-mulcom 9014 ax-mulass 9016 ax-distr 9017 ax-1rid 9020 ax-cnre 9023 |
This theorem depends on definitions: df-bi 178 df-or 360 df-an 361 df-3an 938 df-tru 1325 df-ex 1548 df-nf 1551 df-sb 1656 df-clab 2395 df-cleq 2401 df-clel 2404 df-nfc 2533 df-ral 2675 df-rex 2676 df-rab 2679 df-v 2922 df-dif 3287 df-un 3289 df-in 3291 df-ss 3298 df-nul 3593 df-if 3704 df-sn 3784 df-pr 3785 df-op 3787 df-uni 3980 df-br 4177 df-iota 5381 df-fv 5425 df-ov 6047 df-2 10018 |
Copyright terms: Public domain | W3C validator |