MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anbi2i Structured version   Unicode version

Theorem 3anbi2i 1146
Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
Hypothesis
Ref Expression
3anbi1i.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
3anbi2i  |-  ( ( ch  /\  ph  /\  th )  <->  ( ch  /\  ps  /\  th ) )

Proof of Theorem 3anbi2i
StepHypRef Expression
1 biid 229 . 2  |-  ( ch  <->  ch )
2 3anbi1i.1 . 2  |-  ( ph  <->  ps )
3 biid 229 . 2  |-  ( th  <->  th )
41, 2, 33anbi123i 1143 1  |-  ( ( ch  /\  ph  /\  th )  <->  ( ch  /\  ps  /\  th ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ w3a 937
This theorem is referenced by:  axgroth4  8709  brfi1uzind  11717  cusgra3v  21475  f13dfv  28083  bnj543  29266  bnj916  29306
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 179  df-an 362  df-3an 939
  Copyright terms: Public domain W3C validator