MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anibar Structured version   Unicode version

Theorem 3anibar 1126
Description: Remove a hypothesis from the second member of a biimplication. (Contributed by FL, 22-Jul-2008.)
Hypothesis
Ref Expression
3anibar.1  |-  ( (
ph  /\  ps  /\  ch )  ->  ( th  <->  ( ch  /\ 
ta ) ) )
Assertion
Ref Expression
3anibar  |-  ( (
ph  /\  ps  /\  ch )  ->  ( th  <->  ta )
)

Proof of Theorem 3anibar
StepHypRef Expression
1 3anibar.1 . 2  |-  ( (
ph  /\  ps  /\  ch )  ->  ( th  <->  ( ch  /\ 
ta ) ) )
2 simp3 960 . . 3  |-  ( (
ph  /\  ps  /\  ch )  ->  ch )
32biantrurd 496 . 2  |-  ( (
ph  /\  ps  /\  ch )  ->  ( ta  <->  ( ch  /\ 
ta ) ) )
41, 3bitr4d 249 1  |-  ( (
ph  /\  ps  /\  ch )  ->  ( th  <->  ta )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937
This theorem is referenced by:  neiint  17170
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 179  df-an 362  df-3an 939
  Copyright terms: Public domain W3C validator