MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anor Unicode version

Theorem 3anor 950
Description: Triple conjunction expressed in terms of triple disjunction. (Contributed by Jeff Hankins, 15-Aug-2009.)
Assertion
Ref Expression
3anor  |-  ( (
ph  /\  ps  /\  ch ) 
<->  -.  ( -.  ph  \/  -.  ps  \/  -.  ch ) )

Proof of Theorem 3anor
StepHypRef Expression
1 df-3an 938 . 2  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ( ph  /\  ps )  /\  ch )
)
2 anor 476 . . . 4  |-  ( ( ( ph  /\  ps )  /\  ch )  <->  -.  ( -.  ( ph  /\  ps )  \/  -.  ch )
)
3 ianor 475 . . . . 5  |-  ( -.  ( ph  /\  ps ) 
<->  ( -.  ph  \/  -.  ps ) )
43orbi1i 507 . . . 4  |-  ( ( -.  ( ph  /\  ps )  \/  -.  ch )  <->  ( ( -. 
ph  \/  -.  ps )  \/  -.  ch ) )
52, 4xchbinx 302 . . 3  |-  ( ( ( ph  /\  ps )  /\  ch )  <->  -.  (
( -.  ph  \/  -.  ps )  \/  -.  ch ) )
6 df-3or 937 . . 3  |-  ( ( -.  ph  \/  -.  ps  \/  -.  ch )  <->  ( ( -.  ph  \/  -.  ps )  \/  -.  ch ) )
75, 6xchbinxr 303 . 2  |-  ( ( ( ph  /\  ps )  /\  ch )  <->  -.  ( -.  ph  \/  -.  ps  \/  -.  ch ) )
81, 7bitri 241 1  |-  ( (
ph  /\  ps  /\  ch ) 
<->  -.  ( -.  ph  \/  -.  ps  \/  -.  ch ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 177    \/ wo 358    /\ wa 359    \/ w3o 935    /\ w3a 936
This theorem is referenced by:  3ianor  951  ne3anior  2636
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938
  Copyright terms: Public domain W3C validator