Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3ax5VD Unicode version

Theorem 3ax5VD 28954
Description: Virtual deduction proof of 3ax5 28599. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1::  |-  (. A. x ( ph  ->  ( ps  ->  ch ) )  ->.  A. x ( ph  ->  ( ps  ->  ch ) ) ).
2:1,?: e1_ 28704  |-  (. A. x ( ph  ->  ( ps  ->  ch ) )  ->.  ( A. x ph  ->  A. x ( ps  ->  ch ) ) ).
3::  |-  ( A. x ( ps  ->  ch )  ->  ( A. x ps  ->  A. x ch ) )
4:2,3,?: e10 28772  |-  (. A. x ( ph  ->  ( ps  ->  ch ) )  ->.  ( A. x ph  ->  ( A. x ps  ->  A. x ch ) ) ).
qed:4:  |-  ( A. x ( ph  ->  ( ps  ->  ch ) )  ->  ( A. x ph  ->  ( A. x ps  ->  A. x ch ) ) )
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
3ax5VD  |-  ( A. x ( ph  ->  ( ps  ->  ch )
)  ->  ( A. x ph  ->  ( A. x ps  ->  A. x ch ) ) )

Proof of Theorem 3ax5VD
StepHypRef Expression
1 idn1 28641 . . . 4  |-  (. A. x ( ph  ->  ( ps  ->  ch )
) 
->.  A. x ( ph  ->  ( ps  ->  ch ) ) ).
2 ax-5 1547 . . . 4  |-  ( A. x ( ph  ->  ( ps  ->  ch )
)  ->  ( A. x ph  ->  A. x
( ps  ->  ch ) ) )
31, 2e1_ 28704 . . 3  |-  (. A. x ( ph  ->  ( ps  ->  ch )
) 
->.  ( A. x ph  ->  A. x ( ps 
->  ch ) ) ).
4 ax-5 1547 . . 3  |-  ( A. x ( ps  ->  ch )  ->  ( A. x ps  ->  A. x ch ) )
5 imim1 70 . . 3  |-  ( ( A. x ph  ->  A. x ( ps  ->  ch ) )  ->  (
( A. x ( ps  ->  ch )  ->  ( A. x ps 
->  A. x ch )
)  ->  ( A. x ph  ->  ( A. x ps  ->  A. x ch ) ) ) )
63, 4, 5e10 28772 . 2  |-  (. A. x ( ph  ->  ( ps  ->  ch )
) 
->.  ( A. x ph  ->  ( A. x ps 
->  A. x ch )
) ).
76in1 28638 1  |-  ( A. x ( ph  ->  ( ps  ->  ch )
)  ->  ( A. x ph  ->  ( A. x ps  ->  A. x ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1530
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-5 1547
This theorem depends on definitions:  df-bi 177  df-vd1 28637
  Copyright terms: Public domain W3C validator