MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3brtr3i Structured version   Unicode version

Theorem 3brtr3i 4264
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.)
Hypotheses
Ref Expression
3brtr3.1  |-  A R B
3brtr3.2  |-  A  =  C
3brtr3.3  |-  B  =  D
Assertion
Ref Expression
3brtr3i  |-  C R D

Proof of Theorem 3brtr3i
StepHypRef Expression
1 3brtr3.2 . . 3  |-  A  =  C
2 3brtr3.1 . . 3  |-  A R B
31, 2eqbrtrri 4258 . 2  |-  C R B
4 3brtr3.3 . 2  |-  B  =  D
53, 4breqtri 4260 1  |-  C R D
Colors of variables: wff set class
Syntax hints:    = wceq 1653   class class class wbr 4237
This theorem is referenced by:  supsrlem  9017  ef01bndlem  12816  pige3  20456  log2ublem1  20817  log2ub  20820  ppiublem1  21017  logfacrlim2  21041  chebbnd1  21197  nmoptri2i  23633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-rab 2720  df-v 2964  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-sn 3844  df-pr 3845  df-op 3847  df-br 4238
  Copyright terms: Public domain W3C validator