Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3ccased Unicode version

Theorem 3ccased 24088
 Description: Triple disjunction form of ccased 913. (Contributed by Scott Fenton, 27-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
3ccased.1
3ccased.2
3ccased.3
3ccased.4
3ccased.5
3ccased.6
3ccased.7
3ccased.8
3ccased.9
Assertion
Ref Expression
3ccased

Proof of Theorem 3ccased
StepHypRef Expression
1 3ccased.1 . . . . 5
21com12 27 . . . 4
3 3ccased.2 . . . . 5
43com12 27 . . . 4
5 3ccased.3 . . . . 5
65com12 27 . . . 4
72, 4, 63jaodan 1248 . . 3
8 3ccased.4 . . . . 5
98com12 27 . . . 4
10 3ccased.5 . . . . 5
1110com12 27 . . . 4
12 3ccased.6 . . . . 5
1312com12 27 . . . 4
149, 11, 133jaodan 1248 . . 3
15 3ccased.7 . . . . 5
1615com12 27 . . . 4
17 3ccased.8 . . . . 5
1817com12 27 . . . 4
19 3ccased.9 . . . . 5
2019com12 27 . . . 4
2116, 18, 203jaodan 1248 . . 3
227, 14, 213jaoian 1247 . 2
2322com12 27 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 358   w3o 933 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936
 Copyright terms: Public domain W3C validator