Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dim0 Unicode version

Theorem 3dim0 29646
Description: There exists a 3-dimensional (height-4) element i.e. a volume. (Contributed by NM, 25-Jul-2012.)
Hypotheses
Ref Expression
3dim0.j  |-  .\/  =  ( join `  K )
3dim0.l  |-  .<_  =  ( le `  K )
3dim0.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
3dim0  |-  ( K  e.  HL  ->  E. p  e.  A  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( p  =/=  q  /\  -.  r  .<_  ( p  .\/  q
)  /\  -.  s  .<_  ( ( p  .\/  q )  .\/  r
) ) )
Distinct variable groups:    q, p, r, s, A    .\/ , r, s    K, p, q, r, s
Allowed substitution hints:    .\/ ( q, p)    .<_ ( s, r, q, p)

Proof of Theorem 3dim0
StepHypRef Expression
1 3dim0.j . . 3  |-  .\/  =  ( join `  K )
2 eqid 2283 . . 3  |-  (  <o  `  K )  =  ( 
<o  `  K )
3 3dim0.a . . 3  |-  A  =  ( Atoms `  K )
41, 2, 3athgt 29645 . 2  |-  ( K  e.  HL  ->  E. p  e.  A  E. q  e.  A  ( p
(  <o  `  K )
( p  .\/  q
)  /\  E. r  e.  A  ( (
p  .\/  q )
(  <o  `  K )
( ( p  .\/  q )  .\/  r
)  /\  E. s  e.  A  ( (
p  .\/  q )  .\/  r ) (  <o  `  K ) ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) ) ) )
5 df-3an 936 . . . . . . . . . 10  |-  ( ( p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q )  /\  -.  s  .<_  ( ( p  .\/  q ) 
.\/  r ) )  <-> 
( ( p  =/=  q  /\  -.  r  .<_  ( p  .\/  q
) )  /\  -.  s  .<_  ( ( p 
.\/  q )  .\/  r ) ) )
6 simpll1 994 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  K  e.  HL )
7 eqid 2283 . . . . . . . . . . . . . . 15  |-  ( Base `  K )  =  (
Base `  K )
87, 1, 3hlatjcl 29556 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  ->  ( p  .\/  q
)  e.  ( Base `  K ) )
98ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  (
p  .\/  q )  e.  ( Base `  K
) )
10 simplr 731 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  r  e.  A )
11 3dim0.l . . . . . . . . . . . . . 14  |-  .<_  =  ( le `  K )
127, 11, 1, 2, 3cvr1 29599 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( p  .\/  q )  e.  ( Base `  K
)  /\  r  e.  A )  ->  ( -.  r  .<_  ( p 
.\/  q )  <->  ( p  .\/  q ) (  <o  `  K ) ( ( p  .\/  q ) 
.\/  r ) ) )
136, 9, 10, 12syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  ( -.  r  .<_  ( p 
.\/  q )  <->  ( p  .\/  q ) (  <o  `  K ) ( ( p  .\/  q ) 
.\/  r ) ) )
1413anbi2d 684 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  (
( p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q ) )  <-> 
( p  =/=  q  /\  ( p  .\/  q
) (  <o  `  K
) ( ( p 
.\/  q )  .\/  r ) ) ) )
15 hllat 29553 . . . . . . . . . . . . . 14  |-  ( K  e.  HL  ->  K  e.  Lat )
166, 15syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  K  e.  Lat )
177, 3atbase 29479 . . . . . . . . . . . . . 14  |-  ( r  e.  A  ->  r  e.  ( Base `  K
) )
1817ad2antlr 707 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  r  e.  ( Base `  K
) )
197, 1latjcl 14156 . . . . . . . . . . . . 13  |-  ( ( K  e.  Lat  /\  ( p  .\/  q )  e.  ( Base `  K
)  /\  r  e.  ( Base `  K )
)  ->  ( (
p  .\/  q )  .\/  r )  e.  (
Base `  K )
)
2016, 9, 18, 19syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  (
( p  .\/  q
)  .\/  r )  e.  ( Base `  K
) )
21 simpr 447 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  s  e.  A )
227, 11, 1, 2, 3cvr1 29599 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( ( p  .\/  q )  .\/  r
)  e.  ( Base `  K )  /\  s  e.  A )  ->  ( -.  s  .<_  ( ( p  .\/  q ) 
.\/  r )  <->  ( (
p  .\/  q )  .\/  r ) (  <o  `  K ) ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) ) )
236, 20, 21, 22syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  ( -.  s  .<_  ( ( p  .\/  q ) 
.\/  r )  <->  ( (
p  .\/  q )  .\/  r ) (  <o  `  K ) ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) ) )
2414, 23anbi12d 691 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  (
( ( p  =/=  q  /\  -.  r  .<_  ( p  .\/  q
) )  /\  -.  s  .<_  ( ( p 
.\/  q )  .\/  r ) )  <->  ( (
p  =/=  q  /\  ( p  .\/  q ) (  <o  `  K )
( ( p  .\/  q )  .\/  r
) )  /\  (
( p  .\/  q
)  .\/  r )
(  <o  `  K )
( ( ( p 
.\/  q )  .\/  r )  .\/  s
) ) ) )
255, 24syl5bb 248 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A )  /\  s  e.  A )  ->  (
( p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q )  /\  -.  s  .<_  ( ( p  .\/  q ) 
.\/  r ) )  <-> 
( ( p  =/=  q  /\  ( p 
.\/  q ) ( 
<o  `  K ) ( ( p  .\/  q
)  .\/  r )
)  /\  ( (
p  .\/  q )  .\/  r ) (  <o  `  K ) ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) ) ) )
2625rexbidva 2560 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A
)  ->  ( E. s  e.  A  (
p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q )  /\  -.  s  .<_  ( ( p  .\/  q ) 
.\/  r ) )  <->  E. s  e.  A  ( ( p  =/=  q  /\  ( p 
.\/  q ) ( 
<o  `  K ) ( ( p  .\/  q
)  .\/  r )
)  /\  ( (
p  .\/  q )  .\/  r ) (  <o  `  K ) ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) ) ) )
27 r19.42v 2694 . . . . . . . . 9  |-  ( E. s  e.  A  ( ( p  =/=  q  /\  ( p  .\/  q
) (  <o  `  K
) ( ( p 
.\/  q )  .\/  r ) )  /\  ( ( p  .\/  q )  .\/  r
) (  <o  `  K
) ( ( ( p  .\/  q ) 
.\/  r )  .\/  s ) )  <->  ( (
p  =/=  q  /\  ( p  .\/  q ) (  <o  `  K )
( ( p  .\/  q )  .\/  r
) )  /\  E. s  e.  A  (
( p  .\/  q
)  .\/  r )
(  <o  `  K )
( ( ( p 
.\/  q )  .\/  r )  .\/  s
) ) )
28 anass 630 . . . . . . . . 9  |-  ( ( ( p  =/=  q  /\  ( p  .\/  q
) (  <o  `  K
) ( ( p 
.\/  q )  .\/  r ) )  /\  E. s  e.  A  ( ( p  .\/  q
)  .\/  r )
(  <o  `  K )
( ( ( p 
.\/  q )  .\/  r )  .\/  s
) )  <->  ( p  =/=  q  /\  (
( p  .\/  q
) (  <o  `  K
) ( ( p 
.\/  q )  .\/  r )  /\  E. s  e.  A  (
( p  .\/  q
)  .\/  r )
(  <o  `  K )
( ( ( p 
.\/  q )  .\/  r )  .\/  s
) ) ) )
2927, 28bitri 240 . . . . . . . 8  |-  ( E. s  e.  A  ( ( p  =/=  q  /\  ( p  .\/  q
) (  <o  `  K
) ( ( p 
.\/  q )  .\/  r ) )  /\  ( ( p  .\/  q )  .\/  r
) (  <o  `  K
) ( ( ( p  .\/  q ) 
.\/  r )  .\/  s ) )  <->  ( p  =/=  q  /\  (
( p  .\/  q
) (  <o  `  K
) ( ( p 
.\/  q )  .\/  r )  /\  E. s  e.  A  (
( p  .\/  q
)  .\/  r )
(  <o  `  K )
( ( ( p 
.\/  q )  .\/  r )  .\/  s
) ) ) )
3026, 29syl6bb 252 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  /\  r  e.  A
)  ->  ( E. s  e.  A  (
p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q )  /\  -.  s  .<_  ( ( p  .\/  q ) 
.\/  r ) )  <-> 
( p  =/=  q  /\  ( ( p  .\/  q ) (  <o  `  K ) ( ( p  .\/  q ) 
.\/  r )  /\  E. s  e.  A  ( ( p  .\/  q
)  .\/  r )
(  <o  `  K )
( ( ( p 
.\/  q )  .\/  r )  .\/  s
) ) ) ) )
3130rexbidva 2560 . . . . . 6  |-  ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  ->  ( E. r  e.  A  E. s  e.  A  ( p  =/=  q  /\  -.  r  .<_  ( p  .\/  q
)  /\  -.  s  .<_  ( ( p  .\/  q )  .\/  r
) )  <->  E. r  e.  A  ( p  =/=  q  /\  (
( p  .\/  q
) (  <o  `  K
) ( ( p 
.\/  q )  .\/  r )  /\  E. s  e.  A  (
( p  .\/  q
)  .\/  r )
(  <o  `  K )
( ( ( p 
.\/  q )  .\/  r )  .\/  s
) ) ) ) )
32 r19.42v 2694 . . . . . 6  |-  ( E. r  e.  A  ( p  =/=  q  /\  ( ( p  .\/  q ) (  <o  `  K ) ( ( p  .\/  q ) 
.\/  r )  /\  E. s  e.  A  ( ( p  .\/  q
)  .\/  r )
(  <o  `  K )
( ( ( p 
.\/  q )  .\/  r )  .\/  s
) ) )  <->  ( p  =/=  q  /\  E. r  e.  A  ( (
p  .\/  q )
(  <o  `  K )
( ( p  .\/  q )  .\/  r
)  /\  E. s  e.  A  ( (
p  .\/  q )  .\/  r ) (  <o  `  K ) ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) ) ) )
3331, 32syl6bb 252 . . . . 5  |-  ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  ->  ( E. r  e.  A  E. s  e.  A  ( p  =/=  q  /\  -.  r  .<_  ( p  .\/  q
)  /\  -.  s  .<_  ( ( p  .\/  q )  .\/  r
) )  <->  ( p  =/=  q  /\  E. r  e.  A  ( (
p  .\/  q )
(  <o  `  K )
( ( p  .\/  q )  .\/  r
)  /\  E. s  e.  A  ( (
p  .\/  q )  .\/  r ) (  <o  `  K ) ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) ) ) ) )
341, 2, 3atcvr1 29606 . . . . . 6  |-  ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  ->  ( p  =/=  q  <->  p (  <o  `  K )
( p  .\/  q
) ) )
3534anbi1d 685 . . . . 5  |-  ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  ->  ( ( p  =/=  q  /\  E. r  e.  A  ( (
p  .\/  q )
(  <o  `  K )
( ( p  .\/  q )  .\/  r
)  /\  E. s  e.  A  ( (
p  .\/  q )  .\/  r ) (  <o  `  K ) ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) ) )  <-> 
( p (  <o  `  K ) ( p 
.\/  q )  /\  E. r  e.  A  ( ( p  .\/  q
) (  <o  `  K
) ( ( p 
.\/  q )  .\/  r )  /\  E. s  e.  A  (
( p  .\/  q
)  .\/  r )
(  <o  `  K )
( ( ( p 
.\/  q )  .\/  r )  .\/  s
) ) ) ) )
3633, 35bitrd 244 . . . 4  |-  ( ( K  e.  HL  /\  p  e.  A  /\  q  e.  A )  ->  ( E. r  e.  A  E. s  e.  A  ( p  =/=  q  /\  -.  r  .<_  ( p  .\/  q
)  /\  -.  s  .<_  ( ( p  .\/  q )  .\/  r
) )  <->  ( p
(  <o  `  K )
( p  .\/  q
)  /\  E. r  e.  A  ( (
p  .\/  q )
(  <o  `  K )
( ( p  .\/  q )  .\/  r
)  /\  E. s  e.  A  ( (
p  .\/  q )  .\/  r ) (  <o  `  K ) ( ( ( p  .\/  q
)  .\/  r )  .\/  s ) ) ) ) )
37363expb 1152 . . 3  |-  ( ( K  e.  HL  /\  ( p  e.  A  /\  q  e.  A
) )  ->  ( E. r  e.  A  E. s  e.  A  ( p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q )  /\  -.  s  .<_  ( ( p  .\/  q ) 
.\/  r ) )  <-> 
( p (  <o  `  K ) ( p 
.\/  q )  /\  E. r  e.  A  ( ( p  .\/  q
) (  <o  `  K
) ( ( p 
.\/  q )  .\/  r )  /\  E. s  e.  A  (
( p  .\/  q
)  .\/  r )
(  <o  `  K )
( ( ( p 
.\/  q )  .\/  r )  .\/  s
) ) ) ) )
38372rexbidva 2584 . 2  |-  ( K  e.  HL  ->  ( E. p  e.  A  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( p  =/=  q  /\  -.  r  .<_  ( p 
.\/  q )  /\  -.  s  .<_  ( ( p  .\/  q ) 
.\/  r ) )  <->  E. p  e.  A  E. q  e.  A  ( p (  <o  `  K ) ( p 
.\/  q )  /\  E. r  e.  A  ( ( p  .\/  q
) (  <o  `  K
) ( ( p 
.\/  q )  .\/  r )  /\  E. s  e.  A  (
( p  .\/  q
)  .\/  r )
(  <o  `  K )
( ( ( p 
.\/  q )  .\/  r )  .\/  s
) ) ) ) )
394, 38mpbird 223 1  |-  ( K  e.  HL  ->  E. p  e.  A  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( p  =/=  q  /\  -.  r  .<_  ( p  .\/  q
)  /\  -.  s  .<_  ( ( p  .\/  q )  .\/  r
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   joincjn 14078   Latclat 14151    <o ccvr 29452   Atomscatm 29453   HLchlt 29540
This theorem is referenced by:  3dim1  29656
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541
  Copyright terms: Public domain W3C validator