Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dim1 Unicode version

Theorem 3dim1 29949
Description: Construct a 3-dimensional volume (height-4 element) on top of a given atom  P. (Contributed by NM, 25-Jul-2012.)
Hypotheses
Ref Expression
3dim0.j  |-  .\/  =  ( join `  K )
3dim0.l  |-  .<_  =  ( le `  K )
3dim0.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
3dim1  |-  ( ( K  e.  HL  /\  P  e.  A )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P 
.\/  q )  /\  -.  s  .<_  ( ( P  .\/  q ) 
.\/  r ) ) )
Distinct variable groups:    r, q,
s, A    .\/ , r, s, q    .<_ , q, r, s    P, q, r, s
Allowed substitution hints:    K( s, r, q)

Proof of Theorem 3dim1
Dummy variables  u  t  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3dim0.j . . . 4  |-  .\/  =  ( join `  K )
2 3dim0.l . . . 4  |-  .<_  =  ( le `  K )
3 3dim0.a . . . 4  |-  A  =  ( Atoms `  K )
41, 2, 33dim0 29939 . . 3  |-  ( K  e.  HL  ->  E. t  e.  A  E. u  e.  A  E. v  e.  A  E. w  e.  A  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) ) )
54adantr 452 . 2  |-  ( ( K  e.  HL  /\  P  e.  A )  ->  E. t  e.  A  E. u  e.  A  E. v  e.  A  E. w  e.  A  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )
6 simpl2 961 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  P  =  t )  ->  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )
)
71, 2, 33dimlem1 29940 . . . . . . . . . . . 12  |-  ( ( ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) )  /\  P  =  t )  ->  ( P  =/=  u  /\  -.  v  .<_  ( P  .\/  u
)  /\  -.  w  .<_  ( ( P  .\/  u )  .\/  v
) ) )
873ad2antl3 1121 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  P  =  t )  ->  ( P  =/=  u  /\  -.  v  .<_  ( P  .\/  u )  /\  -.  w  .<_  ( ( P 
.\/  u )  .\/  v ) ) )
91, 2, 33dim1lem5 29948 . . . . . . . . . . 11  |-  ( ( ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( P  =/=  u  /\  -.  v  .<_  ( P  .\/  u
)  /\  -.  w  .<_  ( ( P  .\/  u )  .\/  v
) ) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P 
.\/  q )  /\  -.  s  .<_  ( ( P  .\/  q ) 
.\/  r ) ) )
106, 8, 9syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  P  =  t )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P  .\/  q
)  /\  -.  s  .<_  ( ( P  .\/  q )  .\/  r
) ) )
11 simp13 989 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) ) )  -> 
t  e.  A )
12 simp22 991 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) ) )  -> 
v  e.  A )
13 simp23 992 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) ) )  ->  w  e.  A )
1411, 12, 133jca 1134 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) ) )  -> 
( t  e.  A  /\  v  e.  A  /\  w  e.  A
) )
1514ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  P  =/=  t )  /\  P  .<_  ( t  .\/  u
) )  ->  (
t  e.  A  /\  v  e.  A  /\  w  e.  A )
)
16 simpll1 996 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  P  =/=  t )  /\  P  .<_  ( t  .\/  u
) )  ->  ( K  e.  HL  /\  P  e.  A  /\  t  e.  A ) )
17 simp21 990 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) ) )  ->  u  e.  A )
18 simp32 994 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) ) )  ->  -.  v  .<_  ( t 
.\/  u ) )
19 simp33 995 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) ) )  ->  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) )
2017, 18, 193jca 1134 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) ) )  -> 
( u  e.  A  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )
2120ad2antrr 707 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  P  =/=  t )  /\  P  .<_  ( t  .\/  u
) )  ->  (
u  e.  A  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )
22 simplr 732 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  P  =/=  t )  /\  P  .<_  ( t  .\/  u
) )  ->  P  =/=  t )
23 simpr 448 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  P  =/=  t )  /\  P  .<_  ( t  .\/  u
) )  ->  P  .<_  ( t  .\/  u
) )
241, 2, 33dimlem2 29941 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  ( u  e.  A  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) )  /\  ( P  =/=  t  /\  P  .<_  ( t  .\/  u ) ) )  ->  ( P  =/=  t  /\  -.  v  .<_  ( P  .\/  t )  /\  -.  w  .<_  ( ( P 
.\/  t )  .\/  v ) ) )
2516, 21, 22, 23, 24syl112anc 1188 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  P  =/=  t )  /\  P  .<_  ( t  .\/  u
) )  ->  ( P  =/=  t  /\  -.  v  .<_  ( P  .\/  t )  /\  -.  w  .<_  ( ( P 
.\/  t )  .\/  v ) ) )
261, 2, 33dim1lem5 29948 . . . . . . . . . . . 12  |-  ( ( ( t  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( P  =/=  t  /\  -.  v  .<_  ( P  .\/  t
)  /\  -.  w  .<_  ( ( P  .\/  t )  .\/  v
) ) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P 
.\/  q )  /\  -.  s  .<_  ( ( P  .\/  q ) 
.\/  r ) ) )
2715, 25, 26syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  P  =/=  t )  /\  P  .<_  ( t  .\/  u
) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P  .\/  q
)  /\  -.  s  .<_  ( ( P  .\/  q )  .\/  r
) ) )
2811, 17, 133jca 1134 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) ) )  -> 
( t  e.  A  /\  u  e.  A  /\  w  e.  A
) )
2928ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  /\  P  .<_  ( ( t  .\/  u ) 
.\/  v ) )  ->  ( t  e.  A  /\  u  e.  A  /\  w  e.  A ) )
30 simp1 957 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) ) )  -> 
( K  e.  HL  /\  P  e.  A  /\  t  e.  A )
)
3117, 12jca 519 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) ) )  -> 
( u  e.  A  /\  v  e.  A
) )
32 simp31 993 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) ) )  -> 
t  =/=  u )
3332, 19jca 519 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) ) )  -> 
( t  =/=  u  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )
3430, 31, 333jca 1134 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) ) )  -> 
( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A )  /\  ( t  =/=  u  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) ) )
3534ad2antrr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  /\  P  .<_  ( ( t  .\/  u ) 
.\/  v ) )  ->  ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A )  /\  ( t  =/=  u  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) ) )
36 simplrl 737 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  /\  P  .<_  ( ( t  .\/  u ) 
.\/  v ) )  ->  P  =/=  t
)
37 simplrr 738 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  /\  P  .<_  ( ( t  .\/  u ) 
.\/  v ) )  ->  -.  P  .<_  ( t  .\/  u ) )
38 simpr 448 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  /\  P  .<_  ( ( t  .\/  u ) 
.\/  v ) )  ->  P  .<_  ( ( t  .\/  u ) 
.\/  v ) )
391, 2, 33dimlem3 29943 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A )  /\  ( t  =/=  u  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u )  /\  P  .<_  ( ( t  .\/  u )  .\/  v
) ) )  -> 
( P  =/=  t  /\  -.  u  .<_  ( P 
.\/  t )  /\  -.  w  .<_  ( ( P  .\/  t ) 
.\/  u ) ) )
4035, 36, 37, 38, 39syl13anc 1186 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  /\  P  .<_  ( ( t  .\/  u ) 
.\/  v ) )  ->  ( P  =/=  t  /\  -.  u  .<_  ( P  .\/  t
)  /\  -.  w  .<_  ( ( P  .\/  t )  .\/  u
) ) )
411, 2, 33dim1lem5 29948 . . . . . . . . . . . . . 14  |-  ( ( ( t  e.  A  /\  u  e.  A  /\  w  e.  A
)  /\  ( P  =/=  t  /\  -.  u  .<_  ( P  .\/  t
)  /\  -.  w  .<_  ( ( P  .\/  t )  .\/  u
) ) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P 
.\/  q )  /\  -.  s  .<_  ( ( P  .\/  q ) 
.\/  r ) ) )
4229, 40, 41syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  /\  P  .<_  ( ( t  .\/  u ) 
.\/  v ) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P 
.\/  q )  /\  -.  s  .<_  ( ( P  .\/  q ) 
.\/  r ) ) )
4311, 17, 123jca 1134 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) ) )  -> 
( t  e.  A  /\  u  e.  A  /\  v  e.  A
) )
4443ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  /\  -.  P  .<_  ( ( t  .\/  u
)  .\/  v )
)  ->  ( t  e.  A  /\  u  e.  A  /\  v  e.  A ) )
45 simpl1 960 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  ->  ( K  e.  HL  /\  P  e.  A  /\  t  e.  A ) )
46 simpl21 1035 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  ->  u  e.  A
)
47 simpl22 1036 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  ->  v  e.  A
)
4846, 47jca 519 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  ->  ( u  e.  A  /\  v  e.  A ) )
49 simpl31 1038 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  ->  t  =/=  u
)
50 simpl32 1039 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  ->  -.  v  .<_  ( t  .\/  u ) )
5149, 50jca 519 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  ->  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
) ) )
5245, 48, 513jca 1134 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  ->  ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u ) ) ) )
5352adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  /\  -.  P  .<_  ( ( t  .\/  u
)  .\/  v )
)  ->  ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u ) ) ) )
54 simplr 732 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  /\  -.  P  .<_  ( ( t  .\/  u
)  .\/  v )
)  ->  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u
) ) )
55 simpr 448 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  /\  -.  P  .<_  ( ( t  .\/  u
)  .\/  v )
)  ->  -.  P  .<_  ( ( t  .\/  u )  .\/  v
) )
561, 2, 33dimlem4 29946 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) )  /\  -.  P  .<_  ( ( t  .\/  u ) 
.\/  v ) )  ->  ( P  =/=  t  /\  -.  u  .<_  ( P  .\/  t
)  /\  -.  v  .<_  ( ( P  .\/  t )  .\/  u
) ) )
5753, 54, 55, 56syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  /\  -.  P  .<_  ( ( t  .\/  u
)  .\/  v )
)  ->  ( P  =/=  t  /\  -.  u  .<_  ( P  .\/  t
)  /\  -.  v  .<_  ( ( P  .\/  t )  .\/  u
) ) )
581, 2, 33dim1lem5 29948 . . . . . . . . . . . . . 14  |-  ( ( ( t  e.  A  /\  u  e.  A  /\  v  e.  A
)  /\  ( P  =/=  t  /\  -.  u  .<_  ( P  .\/  t
)  /\  -.  v  .<_  ( ( P  .\/  t )  .\/  u
) ) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P 
.\/  q )  /\  -.  s  .<_  ( ( P  .\/  q ) 
.\/  r ) ) )
5944, 57, 58syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  /\  -.  P  .<_  ( ( t  .\/  u
)  .\/  v )
)  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P  .\/  q
)  /\  -.  s  .<_  ( ( P  .\/  q )  .\/  r
) ) )
6042, 59pm2.61dan 767 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  ( P  =/=  t  /\  -.  P  .<_  ( t  .\/  u ) ) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P 
.\/  q )  /\  -.  s  .<_  ( ( P  .\/  q ) 
.\/  r ) ) )
6160anassrs 630 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  P  =/=  t )  /\  -.  P  .<_  ( t  .\/  u ) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P 
.\/  q )  /\  -.  s  .<_  ( ( P  .\/  q ) 
.\/  r ) ) )
6227, 61pm2.61dan 767 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  (
u  e.  A  /\  v  e.  A  /\  w  e.  A )  /\  ( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) ) )  /\  P  =/=  t )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P  .\/  q
)  /\  -.  s  .<_  ( ( P  .\/  q )  .\/  r
) ) )
6310, 62pm2.61dane 2645 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  /\  ( u  e.  A  /\  v  e.  A  /\  w  e.  A
)  /\  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) ) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P 
.\/  q )  /\  -.  s  .<_  ( ( P  .\/  q ) 
.\/  r ) ) )
64633exp 1152 . . . . . . . 8  |-  ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  ->  ( ( u  e.  A  /\  v  e.  A  /\  w  e.  A )  ->  (
( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P 
.\/  q )  /\  -.  s  .<_  ( ( P  .\/  q ) 
.\/  r ) ) ) ) )
65643expd 1170 . . . . . . 7  |-  ( ( K  e.  HL  /\  P  e.  A  /\  t  e.  A )  ->  ( u  e.  A  ->  ( v  e.  A  ->  ( w  e.  A  ->  ( ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P  .\/  q
)  /\  -.  s  .<_  ( ( P  .\/  q )  .\/  r
) ) ) ) ) ) )
66653exp 1152 . . . . . 6  |-  ( K  e.  HL  ->  ( P  e.  A  ->  ( t  e.  A  -> 
( u  e.  A  ->  ( v  e.  A  ->  ( w  e.  A  ->  ( ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P  .\/  q
)  /\  -.  s  .<_  ( ( P  .\/  q )  .\/  r
) ) ) ) ) ) ) ) )
6766imp43 579 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A )  /\  ( t  e.  A  /\  u  e.  A ) )  -> 
( v  e.  A  ->  ( w  e.  A  ->  ( ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P  .\/  q
)  /\  -.  s  .<_  ( ( P  .\/  q )  .\/  r
) ) ) ) ) )
6867imp3a 421 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A )  /\  ( t  e.  A  /\  u  e.  A ) )  -> 
( ( v  e.  A  /\  w  e.  A )  ->  (
( t  =/=  u  /\  -.  v  .<_  ( t 
.\/  u )  /\  -.  w  .<_  ( ( t  .\/  u ) 
.\/  v ) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P 
.\/  q )  /\  -.  s  .<_  ( ( P  .\/  q ) 
.\/  r ) ) ) ) )
6968rexlimdvv 2796 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A )  /\  ( t  e.  A  /\  u  e.  A ) )  -> 
( E. v  e.  A  E. w  e.  A  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P  .\/  q
)  /\  -.  s  .<_  ( ( P  .\/  q )  .\/  r
) ) ) )
7069rexlimdvva 2797 . 2  |-  ( ( K  e.  HL  /\  P  e.  A )  ->  ( E. t  e.  A  E. u  e.  A  E. v  e.  A  E. w  e.  A  ( t  =/=  u  /\  -.  v  .<_  ( t  .\/  u
)  /\  -.  w  .<_  ( ( t  .\/  u )  .\/  v
) )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P  .\/  q
)  /\  -.  s  .<_  ( ( P  .\/  q )  .\/  r
) ) ) )
715, 70mpd 15 1  |-  ( ( K  e.  HL  /\  P  e.  A )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r  .<_  ( P 
.\/  q )  /\  -.  s  .<_  ( ( P  .\/  q ) 
.\/  r ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   E.wrex 2667   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   lecple 13491   joincjn 14356   Atomscatm 29746   HLchlt 29833
This theorem is referenced by:  3dim2  29950  2dim  29952
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-undef 6502  df-riota 6508  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-lat 14430  df-clat 14492  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834
  Copyright terms: Public domain W3C validator