Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dim1lem5 Structured version   Unicode version

Theorem 3dim1lem5 30325
 Description: Lemma for 3dim1 30326. (Contributed by NM, 26-Jul-2012.)
Hypotheses
Ref Expression
3dim0.j
3dim0.l
3dim0.a
Assertion
Ref Expression
3dim1lem5
Distinct variable groups:   ,,,   ,,   ,,,,   ,,,,   ,,,   ,   ,,,, ,   ,,,,,,
Allowed substitution hints:   (,,)

Proof of Theorem 3dim1lem5
StepHypRef Expression
1 neeq2 2612 . . 3
2 oveq2 6091 . . . . 5
32breq2d 4226 . . . 4
43notbid 287 . . 3
52oveq1d 6098 . . . . 5
65breq2d 4226 . . . 4
76notbid 287 . . 3
81, 4, 73anbi123d 1255 . 2
9 breq1 4217 . . . 4
109notbid 287 . . 3
11 oveq2 6091 . . . . 5
1211breq2d 4226 . . . 4
1312notbid 287 . . 3
1410, 133anbi23d 1258 . 2
15 breq1 4217 . . . 4
1615notbid 287 . . 3
17163anbi3d 1261 . 2
188, 14, 17rspc3ev 3064 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 360   w3a 937   wceq 1653   wcel 1726   wne 2601  wrex 2708   class class class wbr 4214  cfv 5456  (class class class)co 6083  cple 13538  cjn 14403  catm 30123 This theorem is referenced by:  3dim1  30326 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-iota 5420  df-fv 5464  df-ov 6086
 Copyright terms: Public domain W3C validator