Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dimlem1 Structured version   Unicode version

Theorem 3dimlem1 30256
 Description: Lemma for 3dim1 30265. (Contributed by NM, 25-Jul-2012.)
Hypotheses
Ref Expression
3dim0.j
3dim0.l
3dim0.a
Assertion
Ref Expression
3dimlem1

Proof of Theorem 3dimlem1
StepHypRef Expression
1 neeq1 2610 . . 3
2 oveq1 6089 . . . . 5
32breq2d 4225 . . . 4
43notbid 287 . . 3
52oveq1d 6097 . . . . 5
65breq2d 4225 . . . 4
76notbid 287 . . 3
81, 4, 73anbi123d 1255 . 2
98biimparc 475 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 360   w3a 937   wceq 1653   wne 2600   class class class wbr 4213  cfv 5455  (class class class)co 6082  cple 13537  cjn 14402  catm 30062 This theorem is referenced by:  3dim1  30265 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-rex 2712  df-rab 2715  df-v 2959  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-sn 3821  df-pr 3822  df-op 3824  df-uni 4017  df-br 4214  df-iota 5419  df-fv 5463  df-ov 6085
 Copyright terms: Public domain W3C validator