Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dimlem3OLDN Structured version   Unicode version

Theorem 3dimlem3OLDN 30259
Description: Lemma for 3dim1 30264. (Contributed by NM, 25-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
3dim0.j  |-  .\/  =  ( join `  K )
3dim0.l  |-  .<_  =  ( le `  K )
3dim0.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
3dimlem3OLDN  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( ( P  .\/  Q )  .\/  R ) ) )

Proof of Theorem 3dimlem3OLDN
StepHypRef Expression
1 simpr1 963 . 2  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  P  =/=  Q )
2 simpr2 964 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  -.  P  .<_  ( Q  .\/  R ) )
3 simpl11 1032 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  K  e.  HL )
4 simpl2l 1010 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  R  e.  A )
5 simpl12 1033 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  P  e.  A )
6 simpl13 1034 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  Q  e.  A )
7 simpl3l 1012 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  Q  =/=  R )
87necomd 2687 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  R  =/=  Q )
9 3dim0.l . . . . . 6  |-  .<_  =  ( le `  K )
10 3dim0.j . . . . . 6  |-  .\/  =  ( join `  K )
11 3dim0.a . . . . . 6  |-  A  =  ( Atoms `  K )
129, 10, 11hlatexch2 30193 . . . . 5  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  P  e.  A  /\  Q  e.  A
)  /\  R  =/=  Q )  ->  ( R  .<_  ( P  .\/  Q
)  ->  P  .<_  ( R  .\/  Q ) ) )
133, 4, 5, 6, 8, 12syl131anc 1197 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  ( R  .<_  ( P  .\/  Q )  ->  P  .<_  ( R  .\/  Q ) ) )
1410, 11hlatjcom 30165 . . . . . 6  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  R  e.  A )  ->  ( Q  .\/  R
)  =  ( R 
.\/  Q ) )
153, 6, 4, 14syl3anc 1184 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  ( Q  .\/  R )  =  ( R  .\/  Q
) )
1615breq2d 4224 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  ( P  .<_  ( Q  .\/  R )  <->  P  .<_  ( R 
.\/  Q ) ) )
1713, 16sylibrd 226 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  ( R  .<_  ( P  .\/  Q )  ->  P  .<_  ( Q  .\/  R ) ) )
182, 17mtod 170 . 2  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  -.  R  .<_  ( P  .\/  Q ) )
19 simpl3r 1013 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  -.  T  .<_  ( ( Q 
.\/  R )  .\/  S ) )
20 hllat 30161 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
213, 20syl 16 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  K  e.  Lat )
22 eqid 2436 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
2322, 11atbase 30087 . . . . . . 7  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
246, 23syl 16 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  Q  e.  ( Base `  K
) )
2522, 11atbase 30087 . . . . . . 7  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
264, 25syl 16 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  R  e.  ( Base `  K
) )
2722, 11atbase 30087 . . . . . . 7  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
285, 27syl 16 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  P  e.  ( Base `  K
) )
2922, 10latjrot 14529 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( Q  e.  ( Base `  K )  /\  R  e.  ( Base `  K )  /\  P  e.  ( Base `  K
) ) )  -> 
( ( Q  .\/  R )  .\/  P )  =  ( ( P 
.\/  Q )  .\/  R ) )
3021, 24, 26, 28, 29syl13anc 1186 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  (
( Q  .\/  R
)  .\/  P )  =  ( ( P 
.\/  Q )  .\/  R ) )
31 simpr3 965 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  P  .<_  ( ( Q  .\/  R )  .\/  S ) )
32 simpl2r 1011 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  S  e.  A )
3322, 10, 11hlatjcl 30164 . . . . . . . 8  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  R  e.  A )  ->  ( Q  .\/  R
)  e.  ( Base `  K ) )
343, 6, 4, 33syl3anc 1184 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  ( Q  .\/  R )  e.  ( Base `  K
) )
3522, 9, 10, 11hlexchb1 30181 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  S  e.  A  /\  ( Q  .\/  R
)  e.  ( Base `  K ) )  /\  -.  P  .<_  ( Q 
.\/  R ) )  ->  ( P  .<_  ( ( Q  .\/  R
)  .\/  S )  <->  ( ( Q  .\/  R
)  .\/  P )  =  ( ( Q 
.\/  R )  .\/  S ) ) )
363, 5, 32, 34, 2, 35syl131anc 1197 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  ( P  .<_  ( ( Q 
.\/  R )  .\/  S )  <->  ( ( Q 
.\/  R )  .\/  P )  =  ( ( Q  .\/  R ) 
.\/  S ) ) )
3731, 36mpbid 202 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  (
( Q  .\/  R
)  .\/  P )  =  ( ( Q 
.\/  R )  .\/  S ) )
3830, 37eqtr3d 2470 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  (
( P  .\/  Q
)  .\/  R )  =  ( ( Q 
.\/  R )  .\/  S ) )
3938breq2d 4224 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  ( T  .<_  ( ( P 
.\/  Q )  .\/  R )  <->  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )
4019, 39mtbird 293 . 2  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  -.  T  .<_  ( ( P 
.\/  Q )  .\/  R ) )
411, 18, 403jca 1134 1  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A )  /\  ( Q  =/=  R  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )  /\  ( P  =/=  Q  /\  -.  P  .<_  ( Q  .\/  R )  /\  P  .<_  ( ( Q  .\/  R
)  .\/  S )
) )  ->  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( ( P  .\/  Q )  .\/  R ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2599   class class class wbr 4212   ` cfv 5454  (class class class)co 6081   Basecbs 13469   lecple 13536   joincjn 14401   Latclat 14474   Atomscatm 30061   HLchlt 30148
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-undef 6543  df-riota 6549  df-poset 14403  df-plt 14415  df-lub 14431  df-join 14433  df-lat 14475  df-covers 30064  df-ats 30065  df-atl 30096  df-cvlat 30120  df-hlat 30149
  Copyright terms: Public domain W3C validator