MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3eltr4d Unicode version

Theorem 3eltr4d 2377
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
3eltr4d.1  |-  ( ph  ->  A  e.  B )
3eltr4d.2  |-  ( ph  ->  C  =  A )
3eltr4d.3  |-  ( ph  ->  D  =  B )
Assertion
Ref Expression
3eltr4d  |-  ( ph  ->  C  e.  D )

Proof of Theorem 3eltr4d
StepHypRef Expression
1 3eltr4d.2 . 2  |-  ( ph  ->  C  =  A )
2 3eltr4d.1 . . 3  |-  ( ph  ->  A  e.  B )
3 3eltr4d.3 . . 3  |-  ( ph  ->  D  =  B )
42, 3eleqtrrd 2373 . 2  |-  ( ph  ->  A  e.  D )
51, 4eqeltrd 2370 1  |-  ( ph  ->  C  e.  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1632    e. wcel 1696
This theorem is referenced by:  issubc3  13739  xpccatid  13978
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-11 1727  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1532  df-cleq 2289  df-clel 2292
  Copyright terms: Public domain W3C validator