Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  3eltr4i Structured version   Unicode version

Theorem 3eltr4i 2517
 Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
3eltr4.1
3eltr4.2
3eltr4.3
Assertion
Ref Expression
3eltr4i

Proof of Theorem 3eltr4i
StepHypRef Expression
1 3eltr4.2 . 2
2 3eltr4.1 . . 3
3 3eltr4.3 . . 3
42, 3eleqtrri 2511 . 2
51, 4eqeltri 2508 1
 Colors of variables: wff set class Syntax hints:   wceq 1653   wcel 1726 This theorem is referenced by:  oancom  7609  0r  8960  1sr  8961  m1r  8962  lmxrge0  24342  brsigarn  24543  sinccvglem  25114 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-11 1762  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552  df-cleq 2431  df-clel 2434
 Copyright terms: Public domain W3C validator