Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3imp31 Unicode version

Theorem 3imp31 28333
Description: The importation inference 3imp 1145 with commutation of the first and third conjuncts of the assertion relative to the hypothesis. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
3imp31.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
Assertion
Ref Expression
3imp31  |-  ( ( ch  /\  ps  /\  ph )  ->  th )

Proof of Theorem 3imp31
StepHypRef Expression
1 3imp31.1 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
21com13 74 . 2  |-  ( ch 
->  ( ps  ->  ( ph  ->  th ) ) )
323imp 1145 1  |-  ( ( ch  /\  ps  /\  ph )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934
This theorem is referenced by:  suctrALT4  28704
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator