MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3impdir Structured version   Unicode version

Theorem 3impdir 1241
Description: Importation inference (undistribute conjunction). (Contributed by NM, 20-Aug-1995.)
Hypothesis
Ref Expression
3impdir.1  |-  ( ( ( ph  /\  ps )  /\  ( ch  /\  ps ) )  ->  th )
Assertion
Ref Expression
3impdir  |-  ( (
ph  /\  ch  /\  ps )  ->  th )

Proof of Theorem 3impdir
StepHypRef Expression
1 3impdir.1 . . 3  |-  ( ( ( ph  /\  ps )  /\  ( ch  /\  ps ) )  ->  th )
21anandirs 806 . 2  |-  ( ( ( ph  /\  ch )  /\  ps )  ->  th )
323impa 1149 1  |-  ( (
ph  /\  ch  /\  ps )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937
This theorem is referenced by:  divcan7  9725  ccatrcan  11781  his7  22594  his2sub2  22597  hoadddir  23309  nndivsub  26209  eel3132  28825  3impdirp1  28930
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 179  df-an 362  df-3an 939
  Copyright terms: Public domain W3C validator