Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  3impexpbicom Unicode version

Theorem 3impexpbicom 1357
 Description: 3impexp 1356 with biconditional consequent of antecedent that is commuted in consequent. Derived automatically from 3impexpVD 28948. (Contributed by Alan Sare, 31-Dec-2011.) (New usage is discouraged.) TODO: decide if this is worth keeping.
Assertion
Ref Expression
3impexpbicom

Proof of Theorem 3impexpbicom
StepHypRef Expression
1 bicom 191 . . . 4
2 imbi2 314 . . . . 5
32biimpcd 215 . . . 4
41, 3mpi 16 . . 3
543expd 1168 . 2
6 3impexp 1356 . . . 4
76biimpri 197 . . 3
87, 1syl6ibr 218 . 2
95, 8impbii 180 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 176   w3a 934 This theorem is referenced by:  3impexpbicomiVD  28950 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8 This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
 Copyright terms: Public domain W3C validator