Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3impexpbicomVD Structured version   Unicode version

Theorem 3impexpbicomVD 29031
Description: Virtual deduction proof of 3impexpbicom 1377. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 1:: 2:: 3:1,2,?: e10 28857 4:3,?: e1_ 28790 5:4: 6:: 7:6,?: e1_ 28790 8:7,2,?: e10 28857 9:8: qed:5,9,?: e00 28942
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
3impexpbicomVD

Proof of Theorem 3impexpbicomVD
StepHypRef Expression
1 idn1 28727 . . . . 5
2 bicom 193 . . . . 5
3 imbi2 316 . . . . . 6
43biimpcd 217 . . . . 5
51, 2, 4e10 28857 . . . 4
6 3impexp 1376 . . . . 5
76biimpi 188 . . . 4
85, 7e1_ 28790 . . 3
98in1 28724 . 2
10 idn1 28727 . . . . 5
116biimpri 199 . . . . 5
1210, 11e1_ 28790 . . . 4
133biimprcd 218 . . . 4
1412, 2, 13e10 28857 . . 3
1514in1 28724 . 2
16 bi3 181 . 2
179, 15, 16e00 28942 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   w3a 937 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8 This theorem depends on definitions:  df-bi 179  df-an 362  df-3an 939  df-vd1 28723
 Copyright terms: Public domain W3C validator