MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3jaao Unicode version

Theorem 3jaao 1249
Description: Inference conjoining and disjoining the antecedents of three implications. (Contributed by Jeff Hankins, 15-Aug-2009.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Hypotheses
Ref Expression
3jaao.1  |-  ( ph  ->  ( ps  ->  ch ) )
3jaao.2  |-  ( th 
->  ( ta  ->  ch ) )
3jaao.3  |-  ( et 
->  ( ze  ->  ch ) )
Assertion
Ref Expression
3jaao  |-  ( (
ph  /\  th  /\  et )  ->  ( ( ps  \/  ta  \/  ze )  ->  ch ) )

Proof of Theorem 3jaao
StepHypRef Expression
1 3jaao.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
213ad2ant1 976 . 2  |-  ( (
ph  /\  th  /\  et )  ->  ( ps  ->  ch ) )
3 3jaao.2 . . 3  |-  ( th 
->  ( ta  ->  ch ) )
433ad2ant2 977 . 2  |-  ( (
ph  /\  th  /\  et )  ->  ( ta  ->  ch ) )
5 3jaao.3 . . 3  |-  ( et 
->  ( ze  ->  ch ) )
653ad2ant3 978 . 2  |-  ( (
ph  /\  th  /\  et )  ->  ( ze  ->  ch ) )
72, 4, 63jaod 1246 1  |-  ( (
ph  /\  th  /\  et )  ->  ( ( ps  \/  ta  \/  ze )  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ w3o 933    /\ w3a 934
This theorem is referenced by:  lpni  20846  3ornot23  28270
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936
  Copyright terms: Public domain W3C validator