MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3jao Unicode version

Theorem 3jao 1243
Description: Disjunction of 3 antecedents. (Contributed by NM, 8-Apr-1994.)
Assertion
Ref Expression
3jao  |-  ( ( ( ph  ->  ps )  /\  ( ch  ->  ps )  /\  ( th 
->  ps ) )  -> 
( ( ph  \/  ch  \/  th )  ->  ps ) )

Proof of Theorem 3jao
StepHypRef Expression
1 df-3or 935 . 2  |-  ( (
ph  \/  ch  \/  th )  <->  ( ( ph  \/  ch )  \/  th ) )
2 jao 498 . . . 4  |-  ( (
ph  ->  ps )  -> 
( ( ch  ->  ps )  ->  ( ( ph  \/  ch )  ->  ps ) ) )
3 jao 498 . . . 4  |-  ( ( ( ph  \/  ch )  ->  ps )  -> 
( ( th  ->  ps )  ->  ( (
( ph  \/  ch )  \/  th )  ->  ps ) ) )
42, 3syl6 29 . . 3  |-  ( (
ph  ->  ps )  -> 
( ( ch  ->  ps )  ->  ( ( th  ->  ps )  -> 
( ( ( ph  \/  ch )  \/  th )  ->  ps ) ) ) )
543imp 1145 . 2  |-  ( ( ( ph  ->  ps )  /\  ( ch  ->  ps )  /\  ( th 
->  ps ) )  -> 
( ( ( ph  \/  ch )  \/  th )  ->  ps ) )
61, 5syl5bi 208 1  |-  ( ( ( ph  ->  ps )  /\  ( ch  ->  ps )  /\  ( th 
->  ps ) )  -> 
( ( ph  \/  ch  \/  th )  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    \/ w3o 933    /\ w3a 934
This theorem is referenced by:  3jaob  1244  3jaoi  1245  3jaod  1246
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936
  Copyright terms: Public domain W3C validator