MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix3 Unicode version

Theorem 3mix3 1126
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3mix3  |-  ( ph  ->  ( ps  \/  ch  \/  ph ) )

Proof of Theorem 3mix3
StepHypRef Expression
1 3mix1 1124 . 2  |-  ( ph  ->  ( ph  \/  ps  \/  ch ) )
2 3orrot 940 . 2  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ps  \/  ch  \/  ph ) )
31, 2sylib 188 1  |-  ( ph  ->  ( ps  \/  ch  \/  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ w3o 933
This theorem is referenced by:  3mix3i  1129  3jaob  1244  tpid3g  3741  onzsl  4637  elfiun  7183  sornom  7903  fpwwe2lem13  8264  qbtwnxr  10527  dyaddisjlem  18950  ostth  20788  3mix3d  24069  sltsolem1  24322  btwncolinear1  24692  sgplpte21d2  26140  xsyysx  26145  fnwe2lem3  27149  frgra3vlem2  28179  3vfriswmgra  28183  tpid3gVD  28618
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-3or 935
  Copyright terms: Public domain W3C validator