MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3orcoma Unicode version

Theorem 3orcoma 942
Description: Commutation law for triple disjunction. (Contributed by Mario Carneiro, 4-Sep-2016.)
Assertion
Ref Expression
3orcoma  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ps  \/  ph  \/  ch ) )

Proof of Theorem 3orcoma
StepHypRef Expression
1 or12 509 . 2  |-  ( (
ph  \/  ( ps  \/  ch ) )  <->  ( ps  \/  ( ph  \/  ch ) ) )
2 3orass 937 . 2  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ph  \/  ( ps  \/  ch ) ) )
3 3orass 937 . 2  |-  ( ( ps  \/  ph  \/  ch )  <->  ( ps  \/  ( ph  \/  ch )
) )
41, 2, 33bitr4i 268 1  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ps  \/  ph  \/  ch ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    \/ wo 357    \/ w3o 933
This theorem is referenced by:  cadcomb  1386
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-3or 935
  Copyright terms: Public domain W3C validator