Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3orel3 Structured version   Unicode version

Theorem 3orel3 25168
Description: Partial elimination of a triple disjunction by denial of a disjunct. (Contributed by Scott Fenton, 26-Mar-2011.)
Assertion
Ref Expression
3orel3  |-  ( -. 
ch  ->  ( ( ph  \/  ps  \/  ch )  ->  ( ph  \/  ps ) ) )

Proof of Theorem 3orel3
StepHypRef Expression
1 df-3or 938 . 2  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ( ph  \/  ps )  \/  ch ) )
2 orel2 374 . 2  |-  ( -. 
ch  ->  ( ( (
ph  \/  ps )  \/  ch )  ->  ( ph  \/  ps ) ) )
31, 2syl5bi 210 1  |-  ( -. 
ch  ->  ( ( ph  \/  ps  \/  ch )  ->  ( ph  \/  ps ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 359    \/ w3o 936
This theorem is referenced by:  3orel13  25176  nobndup  25657
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 179  df-or 361  df-3or 938
  Copyright terms: Public domain W3C validator