Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  3orim123d Unicode version

Theorem 3orim123d 1260
 Description: Deduction joining 3 implications to form implication of disjunctions. (Contributed by NM, 4-Apr-1997.)
Hypotheses
Ref Expression
3anim123d.1
3anim123d.2
3anim123d.3
Assertion
Ref Expression
3orim123d

Proof of Theorem 3orim123d
StepHypRef Expression
1 3anim123d.1 . . . 4
2 3anim123d.2 . . . 4
31, 2orim12d 811 . . 3
4 3anim123d.3 . . 3
53, 4orim12d 811 . 2
6 df-3or 935 . 2
7 df-3or 935 . 2
85, 6, 73imtr4g 261 1
 Colors of variables: wff set class Syntax hints:   wi 4   wo 357   w3o 933 This theorem is referenced by:  fr3nr  4571  soxp  6228  zorn2lem6  8128  fpwwe2lem12  8263  fpwwe2lem13  8264  sltres  24318  colinearalglem4  24537  colinearxfr  24698 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935
 Copyright terms: Public domain W3C validator