MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3sstr3g Unicode version

Theorem 3sstr3g 3218
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.)
Hypotheses
Ref Expression
3sstr3g.1  |-  ( ph  ->  A  C_  B )
3sstr3g.2  |-  A  =  C
3sstr3g.3  |-  B  =  D
Assertion
Ref Expression
3sstr3g  |-  ( ph  ->  C  C_  D )

Proof of Theorem 3sstr3g
StepHypRef Expression
1 3sstr3g.1 . 2  |-  ( ph  ->  A  C_  B )
2 3sstr3g.2 . . 3  |-  A  =  C
3 3sstr3g.3 . . 3  |-  B  =  D
42, 3sseq12i 3204 . 2  |-  ( A 
C_  B  <->  C  C_  D
)
51, 4sylib 188 1  |-  ( ph  ->  C  C_  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    C_ wss 3152
This theorem is referenced by:  uniintsn  3899  fpwwe2lem13  8264  hmeocls  17459  hmeontr  17460  chsscon3i  22040  pjss1coi  22743  mdslmd2i  22910  dmrngcmp  25751  ssbnd  26512  bnd2lem  26515
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-in 3159  df-ss 3166
  Copyright terms: Public domain W3C validator