MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3sstr3i Unicode version

Theorem 3sstr3i 3322
Description: Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
3sstr3.1  |-  A  C_  B
3sstr3.2  |-  A  =  C
3sstr3.3  |-  B  =  D
Assertion
Ref Expression
3sstr3i  |-  C  C_  D

Proof of Theorem 3sstr3i
StepHypRef Expression
1 3sstr3.1 . 2  |-  A  C_  B
2 3sstr3.2 . . 3  |-  A  =  C
3 3sstr3.3 . . 3  |-  B  =  D
42, 3sseq12i 3310 . 2  |-  ( A 
C_  B  <->  C  C_  D
)
51, 4mpbi 200 1  |-  C  C_  D
Colors of variables: wff set class
Syntax hints:    = wceq 1649    C_ wss 3256
This theorem is referenced by:  odf1o2  15127  leordtval2  17191  uniiccvol  19332  ballotlem2  24518
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2367  df-cleq 2373  df-clel 2376  df-in 3263  df-ss 3270
  Copyright terms: Public domain W3C validator