Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  3sstr3i Structured version   Unicode version

Theorem 3sstr3i 3378
 Description: Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
3sstr3.1
3sstr3.2
3sstr3.3
Assertion
Ref Expression
3sstr3i

Proof of Theorem 3sstr3i
StepHypRef Expression
1 3sstr3.1 . 2
2 3sstr3.2 . . 3
3 3sstr3.3 . . 3
42, 3sseq12i 3366 . 2
51, 4mpbi 200 1
 Colors of variables: wff set class Syntax hints:   wceq 1652   wss 3312 This theorem is referenced by:  odf1o2  15199  leordtval2  17268  uniiccvol  19464  ballotlem2  24738 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-in 3319  df-ss 3326
 Copyright terms: Public domain W3C validator