Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atex2-0cOLDN Structured version   Unicode version

Theorem 4atex2-0cOLDN 30877
Description: Same as 4atex2 30874 except that  S and 
T are zero. TODO: do we need this one or 4atex2-0aOLDN 30875 or 4atex2-0bOLDN 30876? (Contributed by NM, 27-May-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
4that.l  |-  .<_  =  ( le `  K )
4that.j  |-  .\/  =  ( join `  K )
4that.a  |-  A  =  ( Atoms `  K )
4that.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
4atex2-0cOLDN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  T  =  ( 0. `  K )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( S  .\/  z )  =  ( T  .\/  z
) ) )
Distinct variable groups:    z, r, A    H, r    .\/ , r,
z    K, r, z    .<_ , r, z    P, r, z    Q, r, z    S, r, z    W, r, z    T, r, z    z, H

Proof of Theorem 4atex2-0cOLDN
StepHypRef Expression
1 simp21l 1074 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  T  =  ( 0. `  K )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  P  e.  A )
2 simp21r 1075 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  T  =  ( 0. `  K )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  -.  P  .<_  W )
3 simp23 992 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  T  =  ( 0. `  K )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  S  =  ( 0. `  K ) )
43oveq1d 6096 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  T  =  ( 0. `  K )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( S  .\/  P )  =  ( ( 0. `  K
)  .\/  P )
)
5 simp32 994 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  T  =  ( 0. `  K )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  T  =  ( 0. `  K ) )
65oveq1d 6096 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  T  =  ( 0. `  K )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( T  .\/  P )  =  ( ( 0. `  K
)  .\/  P )
)
74, 6eqtr4d 2471 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  T  =  ( 0. `  K )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( S  .\/  P )  =  ( T  .\/  P ) )
8 breq1 4215 . . . . 5  |-  ( z  =  P  ->  (
z  .<_  W  <->  P  .<_  W ) )
98notbid 286 . . . 4  |-  ( z  =  P  ->  ( -.  z  .<_  W  <->  -.  P  .<_  W ) )
10 oveq2 6089 . . . . 5  |-  ( z  =  P  ->  ( S  .\/  z )  =  ( S  .\/  P
) )
11 oveq2 6089 . . . . 5  |-  ( z  =  P  ->  ( T  .\/  z )  =  ( T  .\/  P
) )
1210, 11eqeq12d 2450 . . . 4  |-  ( z  =  P  ->  (
( S  .\/  z
)  =  ( T 
.\/  z )  <->  ( S  .\/  P )  =  ( T  .\/  P ) ) )
139, 12anbi12d 692 . . 3  |-  ( z  =  P  ->  (
( -.  z  .<_  W  /\  ( S  .\/  z )  =  ( T  .\/  z ) )  <->  ( -.  P  .<_  W  /\  ( S 
.\/  P )  =  ( T  .\/  P
) ) ) )
1413rspcev 3052 . 2  |-  ( ( P  e.  A  /\  ( -.  P  .<_  W  /\  ( S  .\/  P )  =  ( T 
.\/  P ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( S  .\/  z )  =  ( T  .\/  z
) ) )
151, 2, 7, 14syl12anc 1182 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  T  =  ( 0. `  K )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( S  .\/  z )  =  ( T  .\/  z
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2599   E.wrex 2706   class class class wbr 4212   ` cfv 5454  (class class class)co 6081   lecple 13536   joincjn 14401   0.cp0 14466   Atomscatm 30061   HLchlt 30148   LHypclh 30781
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-iota 5418  df-fv 5462  df-ov 6084
  Copyright terms: Public domain W3C validator