Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemkc Unicode version

Theorem 4atexlemkc 30869
 Description: Lemma for 4atexlem7 30886. (Contributed by NM, 23-Nov-2012.)
Hypothesis
Ref Expression
4thatlem.ph
Assertion
Ref Expression
4atexlemkc

Proof of Theorem 4atexlemkc
StepHypRef Expression
1 4thatlem.ph . . 3
214atexlemk 30858 . 2
3 hlcvl 30171 . 2
42, 3syl 15 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wb 176   wa 358   w3a 934   wceq 1632   wcel 1696   wne 2459   class class class wbr 4039  (class class class)co 5874  clc 30077  chlt 30162 This theorem is referenced by:  4atexlemswapqr  30874  4atexlemunv  30877  4atexlemtlw  30878  4atexlemntlpq  30879  4atexlemc  30880  4atexlemnclw  30881  4atexlemex2  30882  4atexlemcnd  30883 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-iota 5235  df-fv 5279  df-ov 5877  df-hlat 30163
 Copyright terms: Public domain W3C validator