Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemswapqr Unicode version

Theorem 4atexlemswapqr 30304
Description: Lemma for 4atexlem7 30316. Swap  Q and  R, so that theorems involving  C can be reused for  D. Note that  U must be expanded because it involves  Q. (Contributed by NM, 25-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) ) )
4thatlemslps.l  |-  .<_  =  ( le `  K )
4thatlemslps.j  |-  .\/  =  ( join `  K )
4thatlemslps.a  |-  A  =  ( Atoms `  K )
4thatlemsw.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
Assertion
Ref Expression
4atexlemswapqr  |-  ( ph  ->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( S  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W  /\  ( P  .\/  Q )  =  ( R  .\/  Q ) )  /\  ( T  e.  A  /\  ( ( ( P 
.\/  R )  ./\  W )  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  R  /\  -.  S  .<_  ( P 
.\/  R ) ) ) )

Proof of Theorem 4atexlemswapqr
StepHypRef Expression
1 4thatlem.ph . . . 4  |-  ( ph  <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) ) )
2 simp11 985 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
31, 2sylbi 187 . . 3  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
414atexlempw 30290 . . 3  |-  ( ph  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
5 simp22 989 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) ) )
6 3simpa 952 . . . . 5  |-  ( ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
75, 6syl 15 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
81, 7sylbi 187 . . 3  |-  ( ph  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
93, 4, 83jca 1132 . 2  |-  ( ph  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )
1014atexlems 30293 . . 3  |-  ( ph  ->  S  e.  A )
1114atexlemq 30292 . . . 4  |-  ( ph  ->  Q  e.  A )
12 simp13r 1071 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  -.  Q  .<_  W )
131, 12sylbi 187 . . . 4  |-  ( ph  ->  -.  Q  .<_  W )
1414atexlemkc 30299 . . . . 5  |-  ( ph  ->  K  e.  CvLat )
1514atexlemp 30291 . . . . 5  |-  ( ph  ->  P  e.  A )
168simpld 445 . . . . 5  |-  ( ph  ->  R  e.  A )
1714atexlempnq 30296 . . . . 5  |-  ( ph  ->  P  =/=  Q )
18 simp223 1098 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( P  .\/  R )  =  ( Q  .\/  R ) )
191, 18sylbi 187 . . . . 5  |-  ( ph  ->  ( P  .\/  R
)  =  ( Q 
.\/  R ) )
20 4thatlemslps.a . . . . . 6  |-  A  =  ( Atoms `  K )
21 4thatlemslps.j . . . . . 6  |-  .\/  =  ( join `  K )
2220, 21cvlsupr7 29590 . . . . 5  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  =/=  Q  /\  ( P  .\/  R
)  =  ( Q 
.\/  R ) ) )  ->  ( P  .\/  Q )  =  ( R  .\/  Q ) )
2314, 15, 11, 16, 17, 19, 22syl132anc 1200 . . . 4  |-  ( ph  ->  ( P  .\/  Q
)  =  ( R 
.\/  Q ) )
2411, 13, 233jca 1132 . . 3  |-  ( ph  ->  ( Q  e.  A  /\  -.  Q  .<_  W  /\  ( P  .\/  Q )  =  ( R  .\/  Q ) ) )
2514atexlemt 30294 . . . 4  |-  ( ph  ->  T  e.  A )
26 4thatlemsw.u . . . . . . 7  |-  U  =  ( ( P  .\/  Q )  ./\  W )
2720, 21cvlsupr8 29591 . . . . . . . . 9  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  =/=  Q  /\  ( P  .\/  R
)  =  ( Q 
.\/  R ) ) )  ->  ( P  .\/  Q )  =  ( P  .\/  R ) )
2814, 15, 11, 16, 17, 19, 27syl132anc 1200 . . . . . . . 8  |-  ( ph  ->  ( P  .\/  Q
)  =  ( P 
.\/  R ) )
2928oveq1d 5957 . . . . . . 7  |-  ( ph  ->  ( ( P  .\/  Q )  ./\  W )  =  ( ( P 
.\/  R )  ./\  W ) )
3026, 29syl5eq 2402 . . . . . 6  |-  ( ph  ->  U  =  ( ( P  .\/  R ) 
./\  W ) )
3130oveq1d 5957 . . . . 5  |-  ( ph  ->  ( U  .\/  T
)  =  ( ( ( P  .\/  R
)  ./\  W )  .\/  T ) )
3214atexlemutvt 30295 . . . . 5  |-  ( ph  ->  ( U  .\/  T
)  =  ( V 
.\/  T ) )
3331, 32eqtr3d 2392 . . . 4  |-  ( ph  ->  ( ( ( P 
.\/  R )  ./\  W )  .\/  T )  =  ( V  .\/  T ) )
3425, 33jca 518 . . 3  |-  ( ph  ->  ( T  e.  A  /\  ( ( ( P 
.\/  R )  ./\  W )  .\/  T )  =  ( V  .\/  T ) ) )
3510, 24, 343jca 1132 . 2  |-  ( ph  ->  ( S  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W  /\  ( P  .\/  Q )  =  ( R  .\/  Q ) )  /\  ( T  e.  A  /\  ( ( ( P 
.\/  R )  ./\  W )  .\/  T )  =  ( V  .\/  T ) ) ) )
3620, 21cvlsupr5 29588 . . . . 5  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  =/=  Q  /\  ( P  .\/  R
)  =  ( Q 
.\/  R ) ) )  ->  R  =/=  P )
3736necomd 2604 . . . 4  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  =/=  Q  /\  ( P  .\/  R
)  =  ( Q 
.\/  R ) ) )  ->  P  =/=  R )
3814, 15, 11, 16, 17, 19, 37syl132anc 1200 . . 3  |-  ( ph  ->  P  =/=  R )
3914atexlemnslpq 30297 . . . 4  |-  ( ph  ->  -.  S  .<_  ( P 
.\/  Q ) )
4028eqcomd 2363 . . . . 5  |-  ( ph  ->  ( P  .\/  R
)  =  ( P 
.\/  Q ) )
4140breq2d 4114 . . . 4  |-  ( ph  ->  ( S  .<_  ( P 
.\/  R )  <->  S  .<_  ( P  .\/  Q ) ) )
4239, 41mtbird 292 . . 3  |-  ( ph  ->  -.  S  .<_  ( P 
.\/  R ) )
4338, 42jca 518 . 2  |-  ( ph  ->  ( P  =/=  R  /\  -.  S  .<_  ( P 
.\/  R ) ) )
449, 35, 433jca 1132 1  |-  ( ph  ->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( S  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W  /\  ( P  .\/  Q )  =  ( R  .\/  Q ) )  /\  ( T  e.  A  /\  ( ( ( P 
.\/  R )  ./\  W )  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  R  /\  -.  S  .<_  ( P 
.\/  R ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710    =/= wne 2521   class class class wbr 4102   ` cfv 5334  (class class class)co 5942   lecple 13306   joincjn 14171   Atomscatm 29505   CvLatclc 29507   HLchlt 29592
This theorem is referenced by:  4atexlemex4  30314
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3907  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-id 4388  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-1st 6206  df-2nd 6207  df-undef 6382  df-riota 6388  df-poset 14173  df-plt 14185  df-lub 14201  df-join 14203  df-lat 14245  df-covers 29508  df-ats 29509  df-atl 29540  df-cvlat 29564  df-hlat 29593
  Copyright terms: Public domain W3C validator