Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atlem3 Structured version   Unicode version

Theorem 4atlem3 30393
Description: Lemma for 4at 30410. Break inequality into 4 cases. (Contributed by NM, 8-Jul-2012.)
Hypotheses
Ref Expression
4at.l  |-  .<_  =  ( le `  K )
4at.j  |-  .\/  =  ( join `  K )
4at.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
4atlem3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( -.  P  .<_  ( ( T  .\/  U
)  .\/  V )  \/  -.  Q  .<_  ( ( T  .\/  U ) 
.\/  V ) )  \/  ( -.  R  .<_  ( ( T  .\/  U )  .\/  V )  \/  -.  S  .<_  ( ( T  .\/  U
)  .\/  V )
) ) )

Proof of Theorem 4atlem3
StepHypRef Expression
1 simpl11 1032 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  K  e.  HL )
2 simpl1 960 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A ) )
3 simpl21 1035 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  R  e.  A )
4 simpl22 1036 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  S  e.  A )
5 simpr 448 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )
6 4at.l . . . . . 6  |-  .<_  =  ( le `  K )
7 4at.j . . . . . 6  |-  .\/  =  ( join `  K )
8 4at.a . . . . . 6  |-  A  =  ( Atoms `  K )
9 eqid 2436 . . . . . 6  |-  ( LVols `  K )  =  (
LVols `  K )
106, 7, 8, 9lvoli2 30378 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( ( P  .\/  Q )  .\/  R ) 
.\/  S )  e.  ( LVols `  K )
)
112, 3, 4, 5, 10syl121anc 1189 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( ( P  .\/  Q )  .\/  R ) 
.\/  S )  e.  ( LVols `  K )
)
12 simpl23 1037 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  T  e.  A )
13 simpl3l 1012 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  U  e.  A )
14 simpl3r 1013 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  V  e.  A )
156, 7, 8, 9lvolnle3at 30379 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( ( P 
.\/  Q )  .\/  R )  .\/  S )  e.  ( LVols `  K
) )  /\  ( T  e.  A  /\  U  e.  A  /\  V  e.  A )
)  ->  -.  (
( ( P  .\/  Q )  .\/  R ) 
.\/  S )  .<_  ( ( T  .\/  U )  .\/  V ) )
161, 11, 12, 13, 14, 15syl23anc 1191 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  -.  ( ( ( P 
.\/  Q )  .\/  R )  .\/  S ) 
.<_  ( ( T  .\/  U )  .\/  V ) )
17 hllat 30161 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
181, 17syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  K  e.  Lat )
19 eqid 2436 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
2019, 7, 8hlatjcl 30164 . . . . . 6  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
212, 20syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( P  .\/  Q )  e.  ( Base `  K
) )
2219, 7, 8hlatjcl 30164 . . . . . 6  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  ( R  .\/  S
)  e.  ( Base `  K ) )
231, 3, 4, 22syl3anc 1184 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( R  .\/  S )  e.  ( Base `  K
) )
2419, 7, 8hlatjcl 30164 . . . . . . 7  |-  ( ( K  e.  HL  /\  T  e.  A  /\  U  e.  A )  ->  ( T  .\/  U
)  e.  ( Base `  K ) )
251, 12, 13, 24syl3anc 1184 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  ( T  .\/  U )  e.  ( Base `  K
) )
2619, 8atbase 30087 . . . . . . 7  |-  ( V  e.  A  ->  V  e.  ( Base `  K
) )
2714, 26syl 16 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  V  e.  ( Base `  K
) )
2819, 7latjcl 14479 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( T  .\/  U )  e.  ( Base `  K
)  /\  V  e.  ( Base `  K )
)  ->  ( ( T  .\/  U )  .\/  V )  e.  ( Base `  K ) )
2918, 25, 27, 28syl3anc 1184 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( T  .\/  U
)  .\/  V )  e.  ( Base `  K
) )
3019, 6, 7latjle12 14491 . . . . 5  |-  ( ( K  e.  Lat  /\  ( ( P  .\/  Q )  e.  ( Base `  K )  /\  ( R  .\/  S )  e.  ( Base `  K
)  /\  ( ( T  .\/  U )  .\/  V )  e.  ( Base `  K ) ) )  ->  ( ( ( P  .\/  Q ) 
.<_  ( ( T  .\/  U )  .\/  V )  /\  ( R  .\/  S )  .<_  ( ( T  .\/  U )  .\/  V ) )  <->  ( ( P  .\/  Q )  .\/  ( R  .\/  S ) )  .<_  ( ( T  .\/  U )  .\/  V ) ) )
3118, 21, 23, 29, 30syl13anc 1186 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( ( P  .\/  Q )  .<_  ( ( T  .\/  U )  .\/  V )  /\  ( R 
.\/  S )  .<_  ( ( T  .\/  U )  .\/  V ) )  <->  ( ( P 
.\/  Q )  .\/  ( R  .\/  S ) )  .<_  ( ( T  .\/  U )  .\/  V ) ) )
32 simpl12 1033 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  P  e.  A )
3319, 8atbase 30087 . . . . . . 7  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
3432, 33syl 16 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  P  e.  ( Base `  K
) )
35 simpl13 1034 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  Q  e.  A )
3619, 8atbase 30087 . . . . . . 7  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
3735, 36syl 16 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  Q  e.  ( Base `  K
) )
3819, 6, 7latjle12 14491 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K )  /\  (
( T  .\/  U
)  .\/  V )  e.  ( Base `  K
) ) )  -> 
( ( P  .<_  ( ( T  .\/  U
)  .\/  V )  /\  Q  .<_  ( ( T  .\/  U ) 
.\/  V ) )  <-> 
( P  .\/  Q
)  .<_  ( ( T 
.\/  U )  .\/  V ) ) )
3918, 34, 37, 29, 38syl13anc 1186 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( P  .<_  ( ( T  .\/  U ) 
.\/  V )  /\  Q  .<_  ( ( T 
.\/  U )  .\/  V ) )  <->  ( P  .\/  Q )  .<_  ( ( T  .\/  U ) 
.\/  V ) ) )
4019, 8atbase 30087 . . . . . . 7  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
413, 40syl 16 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  R  e.  ( Base `  K
) )
4219, 8atbase 30087 . . . . . . 7  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
434, 42syl 16 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  S  e.  ( Base `  K
) )
4419, 6, 7latjle12 14491 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( R  e.  ( Base `  K )  /\  S  e.  ( Base `  K )  /\  (
( T  .\/  U
)  .\/  V )  e.  ( Base `  K
) ) )  -> 
( ( R  .<_  ( ( T  .\/  U
)  .\/  V )  /\  S  .<_  ( ( T  .\/  U ) 
.\/  V ) )  <-> 
( R  .\/  S
)  .<_  ( ( T 
.\/  U )  .\/  V ) ) )
4518, 41, 43, 29, 44syl13anc 1186 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( R  .<_  ( ( T  .\/  U ) 
.\/  V )  /\  S  .<_  ( ( T 
.\/  U )  .\/  V ) )  <->  ( R  .\/  S )  .<_  ( ( T  .\/  U ) 
.\/  V ) ) )
4639, 45anbi12d 692 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( ( P  .<_  ( ( T  .\/  U
)  .\/  V )  /\  Q  .<_  ( ( T  .\/  U ) 
.\/  V ) )  /\  ( R  .<_  ( ( T  .\/  U
)  .\/  V )  /\  S  .<_  ( ( T  .\/  U ) 
.\/  V ) ) )  <->  ( ( P 
.\/  Q )  .<_  ( ( T  .\/  U )  .\/  V )  /\  ( R  .\/  S )  .<_  ( ( T  .\/  U )  .\/  V ) ) ) )
4719, 7latjass 14524 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( ( P  .\/  Q )  e.  ( Base `  K )  /\  R  e.  ( Base `  K
)  /\  S  e.  ( Base `  K )
) )  ->  (
( ( P  .\/  Q )  .\/  R ) 
.\/  S )  =  ( ( P  .\/  Q )  .\/  ( R 
.\/  S ) ) )
4818, 21, 41, 43, 47syl13anc 1186 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( ( P  .\/  Q )  .\/  R ) 
.\/  S )  =  ( ( P  .\/  Q )  .\/  ( R 
.\/  S ) ) )
4948breq1d 4222 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( ( ( P 
.\/  Q )  .\/  R )  .\/  S ) 
.<_  ( ( T  .\/  U )  .\/  V )  <-> 
( ( P  .\/  Q )  .\/  ( R 
.\/  S ) ) 
.<_  ( ( T  .\/  U )  .\/  V ) ) )
5031, 46, 493bitr4d 277 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( ( P  .<_  ( ( T  .\/  U
)  .\/  V )  /\  Q  .<_  ( ( T  .\/  U ) 
.\/  V ) )  /\  ( R  .<_  ( ( T  .\/  U
)  .\/  V )  /\  S  .<_  ( ( T  .\/  U ) 
.\/  V ) ) )  <->  ( ( ( P  .\/  Q ) 
.\/  R )  .\/  S )  .<_  ( ( T  .\/  U )  .\/  V ) ) )
5116, 50mtbird 293 . 2  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  -.  ( ( P  .<_  ( ( T  .\/  U
)  .\/  V )  /\  Q  .<_  ( ( T  .\/  U ) 
.\/  V ) )  /\  ( R  .<_  ( ( T  .\/  U
)  .\/  V )  /\  S  .<_  ( ( T  .\/  U ) 
.\/  V ) ) ) )
52 ianor 475 . . 3  |-  ( -.  ( ( P  .<_  ( ( T  .\/  U
)  .\/  V )  /\  Q  .<_  ( ( T  .\/  U ) 
.\/  V ) )  /\  ( R  .<_  ( ( T  .\/  U
)  .\/  V )  /\  S  .<_  ( ( T  .\/  U ) 
.\/  V ) ) )  <->  ( -.  ( P  .<_  ( ( T 
.\/  U )  .\/  V )  /\  Q  .<_  ( ( T  .\/  U
)  .\/  V )
)  \/  -.  ( R  .<_  ( ( T 
.\/  U )  .\/  V )  /\  S  .<_  ( ( T  .\/  U
)  .\/  V )
) ) )
53 ianor 475 . . . 4  |-  ( -.  ( P  .<_  ( ( T  .\/  U ) 
.\/  V )  /\  Q  .<_  ( ( T 
.\/  U )  .\/  V ) )  <->  ( -.  P  .<_  ( ( T 
.\/  U )  .\/  V )  \/  -.  Q  .<_  ( ( T  .\/  U )  .\/  V ) ) )
54 ianor 475 . . . 4  |-  ( -.  ( R  .<_  ( ( T  .\/  U ) 
.\/  V )  /\  S  .<_  ( ( T 
.\/  U )  .\/  V ) )  <->  ( -.  R  .<_  ( ( T 
.\/  U )  .\/  V )  \/  -.  S  .<_  ( ( T  .\/  U )  .\/  V ) ) )
5553, 54orbi12i 508 . . 3  |-  ( ( -.  ( P  .<_  ( ( T  .\/  U
)  .\/  V )  /\  Q  .<_  ( ( T  .\/  U ) 
.\/  V ) )  \/  -.  ( R 
.<_  ( ( T  .\/  U )  .\/  V )  /\  S  .<_  ( ( T  .\/  U ) 
.\/  V ) ) )  <->  ( ( -.  P  .<_  ( ( T  .\/  U )  .\/  V )  \/  -.  Q  .<_  ( ( T  .\/  U )  .\/  V ) )  \/  ( -.  R  .<_  ( ( T  .\/  U )  .\/  V )  \/  -.  S  .<_  ( ( T  .\/  U )  .\/  V ) ) ) )
5652, 55bitri 241 . 2  |-  ( -.  ( ( P  .<_  ( ( T  .\/  U
)  .\/  V )  /\  Q  .<_  ( ( T  .\/  U ) 
.\/  V ) )  /\  ( R  .<_  ( ( T  .\/  U
)  .\/  V )  /\  S  .<_  ( ( T  .\/  U ) 
.\/  V ) ) )  <->  ( ( -.  P  .<_  ( ( T  .\/  U )  .\/  V )  \/  -.  Q  .<_  ( ( T  .\/  U )  .\/  V ) )  \/  ( -.  R  .<_  ( ( T  .\/  U )  .\/  V )  \/  -.  S  .<_  ( ( T  .\/  U )  .\/  V ) ) ) )
5751, 56sylib 189 1  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( U  e.  A  /\  V  e.  A
) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( ( P  .\/  Q )  .\/  R ) ) )  ->  (
( -.  P  .<_  ( ( T  .\/  U
)  .\/  V )  \/  -.  Q  .<_  ( ( T  .\/  U ) 
.\/  V ) )  \/  ( -.  R  .<_  ( ( T  .\/  U )  .\/  V )  \/  -.  S  .<_  ( ( T  .\/  U
)  .\/  V )
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2599   class class class wbr 4212   ` cfv 5454  (class class class)co 6081   Basecbs 13469   lecple 13536   joincjn 14401   Latclat 14474   Atomscatm 30061   HLchlt 30148   LVolsclvol 30290
This theorem is referenced by:  4atlem3a  30394  4atlem12  30409
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-undef 6543  df-riota 6549  df-poset 14403  df-plt 14415  df-lub 14431  df-glb 14432  df-join 14433  df-meet 14434  df-p0 14468  df-lat 14475  df-clat 14537  df-oposet 29974  df-ol 29976  df-oml 29977  df-covers 30064  df-ats 30065  df-atl 30096  df-cvlat 30120  df-hlat 30149  df-llines 30295  df-lplanes 30296  df-lvols 30297
  Copyright terms: Public domain W3C validator