MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4cycl4dv Structured version   Unicode version

Theorem 4cycl4dv 21646
Description: In a simple graph, the vertices of a 4-cycle are mutually different. (Contributed by Alexander van der Vekens, 18-Nov-2017.)
Assertion
Ref Expression
4cycl4dv  |-  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) )  -> 
( ( ( ( E `  ( F `
 0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) )  -> 
( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  /\  ( ( A  =/=  B  /\  A  =/=  C  /\  A  =/= 
D )  /\  ( B  =/=  C  /\  B  =/=  D  /\  C  =/= 
D ) ) ) ) )

Proof of Theorem 4cycl4dv
StepHypRef Expression
1 usgrafun 21370 . . . . 5  |-  ( V USGrph  E  ->  Fun  E )
2 4pos 10078 . . . . . . . . . . . . . . 15  |-  0  <  4
3 breq2 4208 . . . . . . . . . . . . . . 15  |-  ( (
# `  F )  =  4  ->  (
0  <  ( # `  F
)  <->  0  <  4
) )
42, 3mpbiri 225 . . . . . . . . . . . . . 14  |-  ( (
# `  F )  =  4  ->  0  <  ( # `  F
) )
5 0nn0 10228 . . . . . . . . . . . . . 14  |-  0  e.  NN0
64, 5jctil 524 . . . . . . . . . . . . 13  |-  ( (
# `  F )  =  4  ->  (
0  e.  NN0  /\  0  <  ( # `  F
) ) )
7 nvnencycllem 21622 . . . . . . . . . . . . 13  |-  ( ( ( Fun  E  /\  F  e. Word  dom  E )  /\  ( 0  e. 
NN0  /\  0  <  (
# `  F )
) )  ->  (
( E `  ( F `  0 )
)  =  { A ,  B }  ->  { A ,  B }  e.  ran  E ) )
86, 7sylan2 461 . . . . . . . . . . . 12  |-  ( ( ( Fun  E  /\  F  e. Word  dom  E )  /\  ( # `  F
)  =  4 )  ->  ( ( E `
 ( F ` 
0 ) )  =  { A ,  B }  ->  { A ,  B }  e.  ran  E ) )
9 1lt4 10139 . . . . . . . . . . . . . . 15  |-  1  <  4
10 breq2 4208 . . . . . . . . . . . . . . 15  |-  ( (
# `  F )  =  4  ->  (
1  <  ( # `  F
)  <->  1  <  4
) )
119, 10mpbiri 225 . . . . . . . . . . . . . 14  |-  ( (
# `  F )  =  4  ->  1  <  ( # `  F
) )
12 1nn0 10229 . . . . . . . . . . . . . 14  |-  1  e.  NN0
1311, 12jctil 524 . . . . . . . . . . . . 13  |-  ( (
# `  F )  =  4  ->  (
1  e.  NN0  /\  1  <  ( # `  F
) ) )
14 nvnencycllem 21622 . . . . . . . . . . . . 13  |-  ( ( ( Fun  E  /\  F  e. Word  dom  E )  /\  ( 1  e. 
NN0  /\  1  <  (
# `  F )
) )  ->  (
( E `  ( F `  1 )
)  =  { B ,  C }  ->  { B ,  C }  e.  ran  E ) )
1513, 14sylan2 461 . . . . . . . . . . . 12  |-  ( ( ( Fun  E  /\  F  e. Word  dom  E )  /\  ( # `  F
)  =  4 )  ->  ( ( E `
 ( F ` 
1 ) )  =  { B ,  C }  ->  { B ,  C }  e.  ran  E ) )
168, 15anim12d 547 . . . . . . . . . . 11  |-  ( ( ( Fun  E  /\  F  e. Word  dom  E )  /\  ( # `  F
)  =  4 )  ->  ( ( ( E `  ( F `
 0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  ->  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E ) ) )
17 2lt4 10138 . . . . . . . . . . . . . . 15  |-  2  <  4
18 breq2 4208 . . . . . . . . . . . . . . 15  |-  ( (
# `  F )  =  4  ->  (
2  <  ( # `  F
)  <->  2  <  4
) )
1917, 18mpbiri 225 . . . . . . . . . . . . . 14  |-  ( (
# `  F )  =  4  ->  2  <  ( # `  F
) )
20 2nn0 10230 . . . . . . . . . . . . . 14  |-  2  e.  NN0
2119, 20jctil 524 . . . . . . . . . . . . 13  |-  ( (
# `  F )  =  4  ->  (
2  e.  NN0  /\  2  <  ( # `  F
) ) )
22 nvnencycllem 21622 . . . . . . . . . . . . 13  |-  ( ( ( Fun  E  /\  F  e. Word  dom  E )  /\  ( 2  e. 
NN0  /\  2  <  (
# `  F )
) )  ->  (
( E `  ( F `  2 )
)  =  { C ,  D }  ->  { C ,  D }  e.  ran  E ) )
2321, 22sylan2 461 . . . . . . . . . . . 12  |-  ( ( ( Fun  E  /\  F  e. Word  dom  E )  /\  ( # `  F
)  =  4 )  ->  ( ( E `
 ( F ` 
2 ) )  =  { C ,  D }  ->  { C ,  D }  e.  ran  E ) )
24 3lt4 10137 . . . . . . . . . . . . . . 15  |-  3  <  4
25 breq2 4208 . . . . . . . . . . . . . . 15  |-  ( (
# `  F )  =  4  ->  (
3  <  ( # `  F
)  <->  3  <  4
) )
2624, 25mpbiri 225 . . . . . . . . . . . . . 14  |-  ( (
# `  F )  =  4  ->  3  <  ( # `  F
) )
27 3nn0 10231 . . . . . . . . . . . . . 14  |-  3  e.  NN0
2826, 27jctil 524 . . . . . . . . . . . . 13  |-  ( (
# `  F )  =  4  ->  (
3  e.  NN0  /\  3  <  ( # `  F
) ) )
29 nvnencycllem 21622 . . . . . . . . . . . . 13  |-  ( ( ( Fun  E  /\  F  e. Word  dom  E )  /\  ( 3  e. 
NN0  /\  3  <  (
# `  F )
) )  ->  (
( E `  ( F `  3 )
)  =  { D ,  A }  ->  { D ,  A }  e.  ran  E ) )
3028, 29sylan2 461 . . . . . . . . . . . 12  |-  ( ( ( Fun  E  /\  F  e. Word  dom  E )  /\  ( # `  F
)  =  4 )  ->  ( ( E `
 ( F ` 
3 ) )  =  { D ,  A }  ->  { D ,  A }  e.  ran  E ) )
3123, 30anim12d 547 . . . . . . . . . . 11  |-  ( ( ( Fun  E  /\  F  e. Word  dom  E )  /\  ( # `  F
)  =  4 )  ->  ( ( ( E `  ( F `
 2 ) )  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } )  ->  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) ) )
3216, 31anim12d 547 . . . . . . . . . 10  |-  ( ( ( Fun  E  /\  F  e. Word  dom  E )  /\  ( # `  F
)  =  4 )  ->  ( ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) )  -> 
( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) ) ) )
3332ex 424 . . . . . . . . 9  |-  ( ( Fun  E  /\  F  e. Word  dom  E )  -> 
( ( # `  F
)  =  4  -> 
( ( ( ( E `  ( F `
 0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) )  -> 
( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) ) ) ) )
3433expcom 425 . . . . . . . 8  |-  ( F  e. Word  dom  E  ->  ( Fun  E  ->  (
( # `  F )  =  4  ->  (
( ( ( E `
 ( F ` 
0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  ( ( E `  ( F `  2 ) )  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) )  -> 
( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) ) ) ) ) )
3534com23 74 . . . . . . 7  |-  ( F  e. Word  dom  E  ->  ( ( # `  F
)  =  4  -> 
( Fun  E  ->  ( ( ( ( E `
 ( F ` 
0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  ( ( E `  ( F `  2 ) )  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) )  -> 
( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) ) ) ) ) )
3635imp 419 . . . . . 6  |-  ( ( F  e. Word  dom  E  /\  ( # `  F
)  =  4 )  ->  ( Fun  E  ->  ( ( ( ( E `  ( F `
 0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) )  -> 
( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) ) ) ) )
37363adant2 976 . . . . 5  |-  ( ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F )  =  4 )  -> 
( Fun  E  ->  ( ( ( ( E `
 ( F ` 
0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  ( ( E `  ( F `  2 ) )  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) )  -> 
( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) ) ) ) )
381, 37mpan9 456 . . . 4  |-  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) )  -> 
( ( ( ( E `  ( F `
 0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) )  -> 
( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) ) ) )
3938imp 419 . . 3  |-  ( ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F )  =  4 ) )  /\  ( ( ( E `  ( F `
 0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) ) )
40 simpl 444 . . . 4  |-  ( ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  /\  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) ) )  ->  ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) ) )
41 usgraedgrn 21393 . . . . . . . . . . 11  |-  ( ( V USGrph  E  /\  { A ,  B }  e.  ran  E )  ->  A  =/=  B )
4241ex 424 . . . . . . . . . 10  |-  ( V USGrph  E  ->  ( { A ,  B }  e.  ran  E  ->  A  =/=  B
) )
4342ad2antrr 707 . . . . . . . . 9  |-  ( ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F )  =  4 ) )  /\  ( ( ( E `  ( F `
 0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  ( { A ,  B }  e.  ran  E  ->  A  =/=  B
) )
4443com12 29 . . . . . . . 8  |-  ( { A ,  B }  e.  ran  E  ->  (
( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  A  =/=  B
) )
4544ad2antrr 707 . . . . . . 7  |-  ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  ->  ( ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) )  /\  ( ( ( E `
 ( F ` 
0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  ( ( E `  ( F `  2 ) )  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  A  =/=  B
) )
4645imp 419 . . . . . 6  |-  ( ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  /\  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) ) )  ->  A  =/=  B )
47 preq1 3875 . . . . . . . . . . . . . 14  |-  ( A  =  C  ->  { A ,  B }  =  { C ,  B }
)
4847eqeq2d 2446 . . . . . . . . . . . . 13  |-  ( A  =  C  ->  (
( E `  ( F `  0 )
)  =  { A ,  B }  <->  ( E `  ( F `  0
) )  =  { C ,  B }
) )
49 prcom 3874 . . . . . . . . . . . . . . 15  |-  { B ,  C }  =  { C ,  B }
5049eqeq2i 2445 . . . . . . . . . . . . . 14  |-  ( ( E `  ( F `
 1 ) )  =  { B ,  C }  <->  ( E `  ( F `  1 ) )  =  { C ,  B } )
5150a1i 11 . . . . . . . . . . . . 13  |-  ( A  =  C  ->  (
( E `  ( F `  1 )
)  =  { B ,  C }  <->  ( E `  ( F `  1
) )  =  { C ,  B }
) )
5248, 51anbi12d 692 . . . . . . . . . . . 12  |-  ( A  =  C  ->  (
( ( E `  ( F `  0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  <->  ( ( E `  ( F `  0 ) )  =  { C ,  B }  /\  ( E `  ( F `  1 ) )  =  { C ,  B } ) ) )
5352adantr 452 . . . . . . . . . . 11  |-  ( ( A  =  C  /\  ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) ) )  ->  ( ( ( E `  ( F `
 0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  <->  ( ( E `  ( F `  0 ) )  =  { C ,  B }  /\  ( E `  ( F `  1 ) )  =  { C ,  B } ) ) )
54 eqtr3 2454 . . . . . . . . . . . . 13  |-  ( ( ( E `  ( F `  0 )
)  =  { C ,  B }  /\  ( E `  ( F `  1 ) )  =  { C ,  B } )  ->  ( E `  ( F `  0 ) )  =  ( E `  ( F `  1 ) ) )
55 usgraf1 21375 . . . . . . . . . . . . . . 15  |-  ( V USGrph  E  ->  E : dom  E
-1-1-> ran  E )
56 wrdf 11725 . . . . . . . . . . . . . . . . 17  |-  ( F  e. Word  dom  E  ->  F : ( 0..^ (
# `  F )
) --> dom  E )
57 oveq2 6081 . . . . . . . . . . . . . . . . . . 19  |-  ( (
# `  F )  =  4  ->  (
0..^ ( # `  F
) )  =  ( 0..^ 4 ) )
5857feq2d 5573 . . . . . . . . . . . . . . . . . 18  |-  ( (
# `  F )  =  4  ->  ( F : ( 0..^ (
# `  F )
) --> dom  E  <->  F :
( 0..^ 4 ) --> dom  E ) )
59 4nn 10127 . . . . . . . . . . . . . . . . . . . . 21  |-  4  e.  NN
60 lbfzo0 11162 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 0  e.  ( 0..^ 4 )  <->  4  e.  NN )
6159, 60mpbir 201 . . . . . . . . . . . . . . . . . . . 20  |-  0  e.  ( 0..^ 4 )
62 ffvelrn 5860 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( F : ( 0..^ 4 ) --> dom  E  /\  0  e.  (
0..^ 4 ) )  ->  ( F ` 
0 )  e.  dom  E )
6361, 62mpan2 653 . . . . . . . . . . . . . . . . . . 19  |-  ( F : ( 0..^ 4 ) --> dom  E  ->  ( F `  0 )  e.  dom  E )
64 elfzo0 11163 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 1  e.  ( 0..^ 4 )  <->  ( 1  e. 
NN0  /\  4  e.  NN  /\  1  <  4
) )
6512, 59, 9, 64mpbir3an 1136 . . . . . . . . . . . . . . . . . . . 20  |-  1  e.  ( 0..^ 4 )
66 ffvelrn 5860 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( F : ( 0..^ 4 ) --> dom  E  /\  1  e.  (
0..^ 4 ) )  ->  ( F ` 
1 )  e.  dom  E )
6765, 66mpan2 653 . . . . . . . . . . . . . . . . . . 19  |-  ( F : ( 0..^ 4 ) --> dom  E  ->  ( F `  1 )  e.  dom  E )
6863, 67jca 519 . . . . . . . . . . . . . . . . . 18  |-  ( F : ( 0..^ 4 ) --> dom  E  ->  ( ( F `  0
)  e.  dom  E  /\  ( F `  1
)  e.  dom  E
) )
6958, 68syl6bi 220 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  F )  =  4  ->  ( F : ( 0..^ (
# `  F )
) --> dom  E  ->  ( ( F `  0
)  e.  dom  E  /\  ( F `  1
)  e.  dom  E
) ) )
7056, 69mpan9 456 . . . . . . . . . . . . . . . 16  |-  ( ( F  e. Word  dom  E  /\  ( # `  F
)  =  4 )  ->  ( ( F `
 0 )  e. 
dom  E  /\  ( F `  1 )  e.  dom  E ) )
71703adant2 976 . . . . . . . . . . . . . . 15  |-  ( ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F )  =  4 )  -> 
( ( F ` 
0 )  e.  dom  E  /\  ( F ` 
1 )  e.  dom  E ) )
72 f1veqaeq 5997 . . . . . . . . . . . . . . 15  |-  ( ( E : dom  E -1-1-> ran 
E  /\  ( ( F `  0 )  e.  dom  E  /\  ( F `  1 )  e.  dom  E ) )  ->  ( ( E `
 ( F ` 
0 ) )  =  ( E `  ( F `  1 )
)  ->  ( F `  0 )  =  ( F `  1
) ) )
7355, 71, 72syl2an 464 . . . . . . . . . . . . . 14  |-  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) )  -> 
( ( E `  ( F `  0 ) )  =  ( E `
 ( F ` 
1 ) )  -> 
( F `  0
)  =  ( F `
 1 ) ) )
74 df-f1 5451 . . . . . . . . . . . . . . . . . . 19  |-  ( F : ( 0..^ (
# `  F )
) -1-1-> dom  E  <->  ( F : ( 0..^ (
# `  F )
) --> dom  E  /\  Fun  `' F ) )
75 f1eq2 5627 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 0..^ ( # `  F
) )  =  ( 0..^ 4 )  -> 
( F : ( 0..^ ( # `  F
) ) -1-1-> dom  E  <->  F : ( 0..^ 4 ) -1-1-> dom  E ) )
7657, 75syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
# `  F )  =  4  ->  ( F : ( 0..^ (
# `  F )
) -1-1-> dom  E  <->  F :
( 0..^ 4 )
-1-1-> dom  E ) )
77 f1veqaeq 5997 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( F : ( 0..^ 4 ) -1-1-> dom  E  /\  ( 0  e.  ( 0..^ 4 )  /\  1  e.  ( 0..^ 4 ) ) )  ->  ( ( F `
 0 )  =  ( F `  1
)  ->  0  = 
1 ) )
7861, 65, 77mpanr12 667 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( F : ( 0..^ 4 ) -1-1-> dom  E  ->  (
( F `  0
)  =  ( F `
 1 )  -> 
0  =  1 ) )
79 ax-1ne0 9051 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  1  =/=  0
8079necomi 2680 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  0  =/=  1
81 df-ne 2600 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 0  =/=  1  <->  -.  0  =  1 )
8280, 81mpbi 200 . . . . . . . . . . . . . . . . . . . . . . 23  |-  -.  0  =  1
8382pm2.21i 125 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 0  =  1  ->  A  =/=  C )
8478, 83syl6 31 . . . . . . . . . . . . . . . . . . . . 21  |-  ( F : ( 0..^ 4 ) -1-1-> dom  E  ->  (
( F `  0
)  =  ( F `
 1 )  ->  A  =/=  C ) )
8576, 84syl6bi 220 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
# `  F )  =  4  ->  ( F : ( 0..^ (
# `  F )
) -1-1-> dom  E  ->  (
( F `  0
)  =  ( F `
 1 )  ->  A  =/=  C ) ) )
8685com12 29 . . . . . . . . . . . . . . . . . . 19  |-  ( F : ( 0..^ (
# `  F )
) -1-1-> dom  E  ->  (
( # `  F )  =  4  ->  (
( F `  0
)  =  ( F `
 1 )  ->  A  =/=  C ) ) )
8774, 86sylbir 205 . . . . . . . . . . . . . . . . . 18  |-  ( ( F : ( 0..^ ( # `  F
) ) --> dom  E  /\  Fun  `' F )  ->  ( ( # `  F )  =  4  ->  ( ( F `
 0 )  =  ( F `  1
)  ->  A  =/=  C ) ) )
8887ex 424 . . . . . . . . . . . . . . . . 17  |-  ( F : ( 0..^ (
# `  F )
) --> dom  E  ->  ( Fun  `' F  -> 
( ( # `  F
)  =  4  -> 
( ( F ` 
0 )  =  ( F `  1 )  ->  A  =/=  C
) ) ) )
8956, 88syl 16 . . . . . . . . . . . . . . . 16  |-  ( F  e. Word  dom  E  ->  ( Fun  `' F  -> 
( ( # `  F
)  =  4  -> 
( ( F ` 
0 )  =  ( F `  1 )  ->  A  =/=  C
) ) ) )
90893imp 1147 . . . . . . . . . . . . . . 15  |-  ( ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F )  =  4 )  -> 
( ( F ` 
0 )  =  ( F `  1 )  ->  A  =/=  C
) )
9190adantl 453 . . . . . . . . . . . . . 14  |-  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) )  -> 
( ( F ` 
0 )  =  ( F `  1 )  ->  A  =/=  C
) )
9273, 91syld 42 . . . . . . . . . . . . 13  |-  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) )  -> 
( ( E `  ( F `  0 ) )  =  ( E `
 ( F ` 
1 ) )  ->  A  =/=  C ) )
9354, 92syl5 30 . . . . . . . . . . . 12  |-  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) )  -> 
( ( ( E `
 ( F ` 
0 ) )  =  { C ,  B }  /\  ( E `  ( F `  1 ) )  =  { C ,  B } )  ->  A  =/=  C ) )
9493adantl 453 . . . . . . . . . . 11  |-  ( ( A  =  C  /\  ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) ) )  ->  ( ( ( E `  ( F `
 0 ) )  =  { C ,  B }  /\  ( E `  ( F `  1 ) )  =  { C ,  B } )  ->  A  =/=  C ) )
9553, 94sylbid 207 . . . . . . . . . 10  |-  ( ( A  =  C  /\  ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) ) )  ->  ( ( ( E `  ( F `
 0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  ->  A  =/=  C ) )
9695adantrd 455 . . . . . . . . 9  |-  ( ( A  =  C  /\  ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) ) )  ->  ( ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) )  ->  A  =/=  C ) )
9796expimpd 587 . . . . . . . 8  |-  ( A  =  C  ->  (
( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  A  =/=  C
) )
98 ax-1 5 . . . . . . . 8  |-  ( A  =/=  C  ->  (
( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  A  =/=  C
) )
9997, 98pm2.61ine 2674 . . . . . . 7  |-  ( ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F )  =  4 ) )  /\  ( ( ( E `  ( F `
 0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  A  =/=  C
)
10099adantl 453 . . . . . 6  |-  ( ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  /\  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) ) )  ->  A  =/=  C )
101 usgraedgrn 21393 . . . . . . . . . . . . 13  |-  ( ( V USGrph  E  /\  { D ,  A }  e.  ran  E )  ->  D  =/=  A )
102101necomd 2681 . . . . . . . . . . . 12  |-  ( ( V USGrph  E  /\  { D ,  A }  e.  ran  E )  ->  A  =/=  D )
103102ex 424 . . . . . . . . . . 11  |-  ( V USGrph  E  ->  ( { D ,  A }  e.  ran  E  ->  A  =/=  D
) )
104103ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F )  =  4 ) )  /\  ( ( ( E `  ( F `
 0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  ( { D ,  A }  e.  ran  E  ->  A  =/=  D
) )
105104com12 29 . . . . . . . . 9  |-  ( { D ,  A }  e.  ran  E  ->  (
( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  A  =/=  D
) )
106105adantl 453 . . . . . . . 8  |-  ( ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E )  -> 
( ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  A  =/=  D
) )
107106adantl 453 . . . . . . 7  |-  ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  ->  ( ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) )  /\  ( ( ( E `
 ( F ` 
0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  ( ( E `  ( F `  2 ) )  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  A  =/=  D
) )
108107imp 419 . . . . . 6  |-  ( ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  /\  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) ) )  ->  A  =/=  D )
10946, 100, 1083jca 1134 . . . . 5  |-  ( ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  /\  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) ) )  ->  ( A  =/=  B  /\  A  =/= 
C  /\  A  =/=  D ) )
110 usgraedgrn 21393 . . . . . . . . . . . 12  |-  ( ( V USGrph  E  /\  { B ,  C }  e.  ran  E )  ->  B  =/=  C )
111110ex 424 . . . . . . . . . . 11  |-  ( V USGrph  E  ->  ( { B ,  C }  e.  ran  E  ->  B  =/=  C
) )
112111ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F )  =  4 ) )  /\  ( ( ( E `  ( F `
 0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  ( { B ,  C }  e.  ran  E  ->  B  =/=  C
) )
113112com12 29 . . . . . . . . 9  |-  ( { B ,  C }  e.  ran  E  ->  (
( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  B  =/=  C
) )
114113adantl 453 . . . . . . . 8  |-  ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  -> 
( ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  B  =/=  C
) )
115114adantr 452 . . . . . . 7  |-  ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  ->  ( ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) )  /\  ( ( ( E `
 ( F ` 
0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  ( ( E `  ( F `  2 ) )  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  B  =/=  C
) )
116115imp 419 . . . . . 6  |-  ( ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  /\  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) ) )  ->  B  =/=  C )
117 prcom 3874 . . . . . . . . . . . . . . . . . . . . 21  |-  { D ,  A }  =  { A ,  D }
118117eqeq2i 2445 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( E `  ( F `
 3 ) )  =  { D ,  A }  <->  ( E `  ( F `  3 ) )  =  { A ,  D } )
119118a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( B  =  D  ->  (
( E `  ( F `  3 )
)  =  { D ,  A }  <->  ( E `  ( F `  3
) )  =  { A ,  D }
) )
120 preq2 3876 . . . . . . . . . . . . . . . . . . . 20  |-  ( B  =  D  ->  { A ,  B }  =  { A ,  D }
)
121120eqeq2d 2446 . . . . . . . . . . . . . . . . . . 19  |-  ( B  =  D  ->  (
( E `  ( F `  0 )
)  =  { A ,  B }  <->  ( E `  ( F `  0
) )  =  { A ,  D }
) )
122119, 121anbi12d 692 . . . . . . . . . . . . . . . . . 18  |-  ( B  =  D  ->  (
( ( E `  ( F `  3 ) )  =  { D ,  A }  /\  ( E `  ( F `  0 ) )  =  { A ,  B } )  <->  ( ( E `  ( F `  3 ) )  =  { A ,  D }  /\  ( E `  ( F `  0 ) )  =  { A ,  D } ) ) )
123122adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( ( B  =  D  /\  ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) ) )  ->  ( ( ( E `  ( F `
 3 ) )  =  { D ,  A }  /\  ( E `  ( F `  0 ) )  =  { A ,  B } )  <->  ( ( E `  ( F `  3 ) )  =  { A ,  D }  /\  ( E `  ( F `  0 ) )  =  { A ,  D } ) ) )
124 eqtr3 2454 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( E `  ( F `  3 )
)  =  { A ,  D }  /\  ( E `  ( F `  0 ) )  =  { A ,  D } )  ->  ( E `  ( F `  3 ) )  =  ( E `  ( F `  0 ) ) )
125 elfzo0 11163 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( 3  e.  ( 0..^ 4 )  <->  ( 3  e. 
NN0  /\  4  e.  NN  /\  3  <  4
) )
12627, 59, 24, 125mpbir3an 1136 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  3  e.  ( 0..^ 4 )
127 ffvelrn 5860 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( F : ( 0..^ 4 ) --> dom  E  /\  3  e.  (
0..^ 4 ) )  ->  ( F ` 
3 )  e.  dom  E )
128126, 127mpan2 653 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( F : ( 0..^ 4 ) --> dom  E  ->  ( F `  3 )  e.  dom  E )
129128, 63jca 519 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( F : ( 0..^ 4 ) --> dom  E  ->  ( ( F `  3
)  e.  dom  E  /\  ( F `  0
)  e.  dom  E
) )
13058, 129syl6bi 220 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
# `  F )  =  4  ->  ( F : ( 0..^ (
# `  F )
) --> dom  E  ->  ( ( F `  3
)  e.  dom  E  /\  ( F `  0
)  e.  dom  E
) ) )
13156, 130mpan9 456 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( F  e. Word  dom  E  /\  ( # `  F
)  =  4 )  ->  ( ( F `
 3 )  e. 
dom  E  /\  ( F `  0 )  e.  dom  E ) )
1321313adant2 976 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F )  =  4 )  -> 
( ( F ` 
3 )  e.  dom  E  /\  ( F ` 
0 )  e.  dom  E ) )
133 f1veqaeq 5997 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( E : dom  E -1-1-> ran 
E  /\  ( ( F `  3 )  e.  dom  E  /\  ( F `  0 )  e.  dom  E ) )  ->  ( ( E `
 ( F ` 
3 ) )  =  ( E `  ( F `  0 )
)  ->  ( F `  3 )  =  ( F `  0
) ) )
13455, 132, 133syl2an 464 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) )  -> 
( ( E `  ( F `  3 ) )  =  ( E `
 ( F ` 
0 ) )  -> 
( F `  3
)  =  ( F `
 0 ) ) )
135 f1veqaeq 5997 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( F : ( 0..^ 4 ) -1-1-> dom  E  /\  ( 3  e.  ( 0..^ 4 )  /\  0  e.  ( 0..^ 4 ) ) )  ->  ( ( F `
 3 )  =  ( F `  0
)  ->  3  = 
0 ) )
136126, 61, 135mpanr12 667 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( F : ( 0..^ 4 ) -1-1-> dom  E  ->  (
( F `  3
)  =  ( F `
 0 )  -> 
3  =  0 ) )
137 3ne0 10077 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  3  =/=  0
138 df-ne 2600 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( 3  =/=  0  <->  -.  3  =  0 )
139137, 138mpbi 200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  -.  3  =  0
140139pm2.21i 125 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( 3  =  0  ->  B  =/=  D )
141136, 140syl6 31 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( F : ( 0..^ 4 ) -1-1-> dom  E  ->  (
( F `  3
)  =  ( F `
 0 )  ->  B  =/=  D ) )
14276, 141syl6bi 220 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
# `  F )  =  4  ->  ( F : ( 0..^ (
# `  F )
) -1-1-> dom  E  ->  (
( F `  3
)  =  ( F `
 0 )  ->  B  =/=  D ) ) )
143142com12 29 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( F : ( 0..^ (
# `  F )
) -1-1-> dom  E  ->  (
( # `  F )  =  4  ->  (
( F `  3
)  =  ( F `
 0 )  ->  B  =/=  D ) ) )
14474, 143sylbir 205 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( F : ( 0..^ ( # `  F
) ) --> dom  E  /\  Fun  `' F )  ->  ( ( # `  F )  =  4  ->  ( ( F `
 3 )  =  ( F `  0
)  ->  B  =/=  D ) ) )
145144ex 424 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( F : ( 0..^ (
# `  F )
) --> dom  E  ->  ( Fun  `' F  -> 
( ( # `  F
)  =  4  -> 
( ( F ` 
3 )  =  ( F `  0 )  ->  B  =/=  D
) ) ) )
14656, 145syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( F  e. Word  dom  E  ->  ( Fun  `' F  -> 
( ( # `  F
)  =  4  -> 
( ( F ` 
3 )  =  ( F `  0 )  ->  B  =/=  D
) ) ) )
1471463imp 1147 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F )  =  4 )  -> 
( ( F ` 
3 )  =  ( F `  0 )  ->  B  =/=  D
) )
148147adantl 453 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) )  -> 
( ( F ` 
3 )  =  ( F `  0 )  ->  B  =/=  D
) )
149134, 148syld 42 . . . . . . . . . . . . . . . . . . 19  |-  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) )  -> 
( ( E `  ( F `  3 ) )  =  ( E `
 ( F ` 
0 ) )  ->  B  =/=  D ) )
150124, 149syl5 30 . . . . . . . . . . . . . . . . . 18  |-  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) )  -> 
( ( ( E `
 ( F ` 
3 ) )  =  { A ,  D }  /\  ( E `  ( F `  0 ) )  =  { A ,  D } )  ->  B  =/=  D ) )
151150adantl 453 . . . . . . . . . . . . . . . . 17  |-  ( ( B  =  D  /\  ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) ) )  ->  ( ( ( E `  ( F `
 3 ) )  =  { A ,  D }  /\  ( E `  ( F `  0 ) )  =  { A ,  D } )  ->  B  =/=  D ) )
152123, 151sylbid 207 . . . . . . . . . . . . . . . 16  |-  ( ( B  =  D  /\  ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) ) )  ->  ( ( ( E `  ( F `
 3 ) )  =  { D ,  A }  /\  ( E `  ( F `  0 ) )  =  { A ,  B } )  ->  B  =/=  D ) )
153152com12 29 . . . . . . . . . . . . . . 15  |-  ( ( ( E `  ( F `  3 )
)  =  { D ,  A }  /\  ( E `  ( F `  0 ) )  =  { A ,  B } )  ->  (
( B  =  D  /\  ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) ) )  ->  B  =/=  D ) )
154153ex 424 . . . . . . . . . . . . . 14  |-  ( ( E `  ( F `
 3 ) )  =  { D ,  A }  ->  ( ( E `  ( F `
 0 ) )  =  { A ,  B }  ->  ( ( B  =  D  /\  ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) ) )  ->  B  =/=  D
) ) )
155154adantl 453 . . . . . . . . . . . . 13  |-  ( ( ( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } )  ->  (
( E `  ( F `  0 )
)  =  { A ,  B }  ->  (
( B  =  D  /\  ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) ) )  ->  B  =/=  D ) ) )
156155com12 29 . . . . . . . . . . . 12  |-  ( ( E `  ( F `
 0 ) )  =  { A ,  B }  ->  ( ( ( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } )  ->  (
( B  =  D  /\  ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) ) )  ->  B  =/=  D ) ) )
157156adantr 452 . . . . . . . . . . 11  |-  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  ->  (
( ( E `  ( F `  2 ) )  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } )  ->  (
( B  =  D  /\  ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) ) )  ->  B  =/=  D ) ) )
158157imp 419 . . . . . . . . . 10  |-  ( ( ( ( E `  ( F `  0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) )  -> 
( ( B  =  D  /\  ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) ) )  ->  B  =/=  D ) )
159158com12 29 . . . . . . . . 9  |-  ( ( B  =  D  /\  ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) ) )  ->  ( ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) )  ->  B  =/=  D ) )
160159expimpd 587 . . . . . . . 8  |-  ( B  =  D  ->  (
( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  B  =/=  D
) )
161 ax-1 5 . . . . . . . 8  |-  ( B  =/=  D  ->  (
( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  B  =/=  D
) )
162160, 161pm2.61ine 2674 . . . . . . 7  |-  ( ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F )  =  4 ) )  /\  ( ( ( E `  ( F `
 0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  B  =/=  D
)
163162adantl 453 . . . . . 6  |-  ( ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  /\  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) ) )  ->  B  =/=  D )
164 usgraedgrn 21393 . . . . . . . . . . . 12  |-  ( ( V USGrph  E  /\  { C ,  D }  e.  ran  E )  ->  C  =/=  D )
165164ex 424 . . . . . . . . . . 11  |-  ( V USGrph  E  ->  ( { C ,  D }  e.  ran  E  ->  C  =/=  D
) )
166165ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F )  =  4 ) )  /\  ( ( ( E `  ( F `
 0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  ( { C ,  D }  e.  ran  E  ->  C  =/=  D
) )
167166com12 29 . . . . . . . . 9  |-  ( { C ,  D }  e.  ran  E  ->  (
( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  C  =/=  D
) )
168167adantr 452 . . . . . . . 8  |-  ( ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E )  -> 
( ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  C  =/=  D
) )
169168adantl 453 . . . . . . 7  |-  ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  ->  ( ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) )  /\  ( ( ( E `
 ( F ` 
0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  ( ( E `  ( F `  2 ) )  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  C  =/=  D
) )
170169imp 419 . . . . . 6  |-  ( ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  /\  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) ) )  ->  C  =/=  D )
171116, 163, 1703jca 1134 . . . . 5  |-  ( ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  /\  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) ) )  ->  ( B  =/=  C  /\  B  =/= 
D  /\  C  =/=  D ) )
172109, 171jca 519 . . . 4  |-  ( ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  /\  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) ) )  ->  ( ( A  =/=  B  /\  A  =/=  C  /\  A  =/= 
D )  /\  ( B  =/=  C  /\  B  =/=  D  /\  C  =/= 
D ) ) )
17340, 172jca 519 . . 3  |-  ( ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  /\  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) ) )  ->  ( (
( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  /\  ( ( A  =/=  B  /\  A  =/=  C  /\  A  =/= 
D )  /\  ( B  =/=  C  /\  B  =/=  D  /\  C  =/= 
D ) ) ) )
17439, 173mpancom 651 . 2  |-  ( ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F )  =  4 ) )  /\  ( ( ( E `  ( F `
 0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  /\  ( ( A  =/=  B  /\  A  =/=  C  /\  A  =/= 
D )  /\  ( B  =/=  C  /\  B  =/=  D  /\  C  =/= 
D ) ) ) )
175174ex 424 1  |-  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) )  -> 
( ( ( ( E `  ( F `
 0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) )  -> 
( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  /\  ( ( A  =/=  B  /\  A  =/=  C  /\  A  =/= 
D )  /\  ( B  =/=  C  /\  B  =/=  D  /\  C  =/= 
D ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   {cpr 3807   class class class wbr 4204   `'ccnv 4869   dom cdm 4870   ran crn 4871   Fun wfun 5440   -->wf 5442   -1-1->wf1 5443   ` cfv 5446  (class class class)co 6073   0cc0 8982   1c1 8983    < clt 9112   NNcn 9992   2c2 10041   3c3 10042   4c4 10043   NN0cn0 10213  ..^cfzo 11127   #chash 11610  Word cword 11709   USGrph cusg 21357
This theorem is referenced by:  4cycl4dv4e  21647
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-card 7818  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-n0 10214  df-z 10275  df-uz 10481  df-fz 11036  df-fzo 11128  df-hash 11611  df-word 11715  df-usgra 21359
  Copyright terms: Public domain W3C validator