MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4ipval2 Unicode version

Theorem 4ipval2 22161
Description: Four times the inner product value ipval3 22162, useful for simplifying certain proofs. (Contributed by NM, 10-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
dipfval.1  |-  X  =  ( BaseSet `  U )
dipfval.2  |-  G  =  ( +v `  U
)
dipfval.4  |-  S  =  ( .s OLD `  U
)
dipfval.6  |-  N  =  ( normCV `  U )
dipfval.7  |-  P  =  ( .i OLD `  U
)
Assertion
Ref Expression
4ipval2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
4  x.  ( A P B ) )  =  ( ( ( ( N `  ( A G B ) ) ^ 2 )  -  ( ( N `  ( A G ( -u
1 S B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( A G ( _i S B ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) )

Proof of Theorem 4ipval2
StepHypRef Expression
1 dipfval.1 . . . 4  |-  X  =  ( BaseSet `  U )
2 dipfval.2 . . . 4  |-  G  =  ( +v `  U
)
3 dipfval.4 . . . 4  |-  S  =  ( .s OLD `  U
)
4 dipfval.6 . . . 4  |-  N  =  ( normCV `  U )
5 dipfval.7 . . . 4  |-  P  =  ( .i OLD `  U
)
61, 2, 3, 4, 5ipval2 22160 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A P B )  =  ( ( ( ( ( N `  ( A G B ) ) ^ 2 )  -  ( ( N `  ( A G ( -u
1 S B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( A G ( _i S B ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) )  / 
4 ) )
76oveq2d 6060 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
4  x.  ( A P B ) )  =  ( 4  x.  ( ( ( ( ( N `  ( A G B ) ) ^ 2 )  -  ( ( N `  ( A G ( -u
1 S B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( A G ( _i S B ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) )  / 
4 ) ) )
8 simp1 957 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  U  e.  NrmCVec )
91, 2nvgcl 22056 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A G B )  e.  X )
101, 4nvcl 22105 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  ( A G B )  e.  X )  ->  ( N `  ( A G B ) )  e.  RR )
118, 9, 10syl2anc 643 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A G B ) )  e.  RR )
1211recnd 9074 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A G B ) )  e.  CC )
1312sqcld 11480 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( N `  ( A G B ) ) ^ 2 )  e.  CC )
14 neg1cn 10027 . . . . . . . . . . 11  |-  -u 1  e.  CC
151, 3nvscl 22064 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  -u 1  e.  CC  /\  B  e.  X )  ->  ( -u 1 S B )  e.  X )
1614, 15mp3an2 1267 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  B  e.  X )  ->  ( -u 1 S B )  e.  X )
17163adant2 976 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( -u 1 S B )  e.  X )
181, 2nvgcl 22056 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  ( -u 1 S B )  e.  X )  -> 
( A G (
-u 1 S B ) )  e.  X
)
1917, 18syld3an3 1229 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A G ( -u 1 S B ) )  e.  X )
201, 4nvcl 22105 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  ( A G ( -u 1 S B ) )  e.  X )  ->  ( N `  ( A G ( -u 1 S B ) ) )  e.  RR )
218, 19, 20syl2anc 643 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A G ( -u 1 S B ) ) )  e.  RR )
2221recnd 9074 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A G ( -u 1 S B ) ) )  e.  CC )
2322sqcld 11480 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( N `  ( A G ( -u 1 S B ) ) ) ^ 2 )  e.  CC )
2413, 23subcld 9371 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( N `  ( A G B ) ) ^ 2 )  -  ( ( N `
 ( A G ( -u 1 S B ) ) ) ^ 2 ) )  e.  CC )
25 ax-icn 9009 . . . . 5  |-  _i  e.  CC
261, 3nvscl 22064 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  _i  e.  CC  /\  B  e.  X )  ->  (
_i S B )  e.  X )
2725, 26mp3an2 1267 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  B  e.  X )  ->  (
_i S B )  e.  X )
28273adant2 976 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
_i S B )  e.  X )
291, 2nvgcl 22056 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  (
_i S B )  e.  X )  -> 
( A G ( _i S B ) )  e.  X )
3028, 29syld3an3 1229 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A G ( _i S B ) )  e.  X )
311, 4nvcl 22105 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  ( A G ( _i S B ) )  e.  X )  ->  ( N `  ( A G ( _i S B ) ) )  e.  RR )
328, 30, 31syl2anc 643 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A G ( _i S B ) ) )  e.  RR )
3332recnd 9074 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A G ( _i S B ) ) )  e.  CC )
3433sqcld 11480 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( N `  ( A G ( _i S B ) ) ) ^ 2 )  e.  CC )
3525negcli 9328 . . . . . . . . . . . 12  |-  -u _i  e.  CC
361, 3nvscl 22064 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  -u _i  e.  CC  /\  B  e.  X )  ->  ( -u _i S B )  e.  X )
3735, 36mp3an2 1267 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  B  e.  X )  ->  ( -u _i S B )  e.  X )
38373adant2 976 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( -u _i S B )  e.  X )
391, 2nvgcl 22056 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  ( -u _i S B )  e.  X )  -> 
( A G (
-u _i S B ) )  e.  X
)
4038, 39syld3an3 1229 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A G ( -u _i S B ) )  e.  X )
411, 4nvcl 22105 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  ( A G ( -u _i S B ) )  e.  X )  ->  ( N `  ( A G ( -u _i S B ) ) )  e.  RR )
428, 40, 41syl2anc 643 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A G ( -u _i S B ) ) )  e.  RR )
4342recnd 9074 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A G ( -u _i S B ) ) )  e.  CC )
4443sqcld 11480 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( N `  ( A G ( -u _i S B ) ) ) ^ 2 )  e.  CC )
4534, 44subcld 9371 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( N `  ( A G ( _i S B ) ) ) ^ 2 )  -  ( ( N `
 ( A G ( -u _i S B ) ) ) ^ 2 ) )  e.  CC )
46 mulcl 9034 . . . . 5  |-  ( ( _i  e.  CC  /\  ( ( ( N `
 ( A G ( _i S B ) ) ) ^
2 )  -  (
( N `  ( A G ( -u _i S B ) ) ) ^ 2 ) )  e.  CC )  -> 
( _i  x.  (
( ( N `  ( A G ( _i S B ) ) ) ^ 2 )  -  ( ( N `
 ( A G ( -u _i S B ) ) ) ^ 2 ) ) )  e.  CC )
4725, 45, 46sylancr 645 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
_i  x.  ( (
( N `  ( A G ( _i S B ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u _i S B ) ) ) ^ 2 ) ) )  e.  CC )
4824, 47addcld 9067 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( ( N `
 ( A G B ) ) ^
2 )  -  (
( N `  ( A G ( -u 1 S B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `
 ( A G ( _i S B ) ) ) ^
2 )  -  (
( N `  ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) )  e.  CC )
49 4cn 10034 . . . 4  |-  4  e.  CC
50 4re 10033 . . . . 5  |-  4  e.  RR
51 4pos 10046 . . . . 5  |-  0  <  4
5250, 51gt0ne0ii 9523 . . . 4  |-  4  =/=  0
53 divcan2 9646 . . . 4  |-  ( ( ( ( ( ( N `  ( A G B ) ) ^ 2 )  -  ( ( N `  ( A G ( -u
1 S B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( A G ( _i S B ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) )  e.  CC  /\  4  e.  CC  /\  4  =/=  0 )  ->  (
4  x.  ( ( ( ( ( N `
 ( A G B ) ) ^
2 )  -  (
( N `  ( A G ( -u 1 S B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `
 ( A G ( _i S B ) ) ) ^
2 )  -  (
( N `  ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) )  /  4
) )  =  ( ( ( ( N `
 ( A G B ) ) ^
2 )  -  (
( N `  ( A G ( -u 1 S B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `
 ( A G ( _i S B ) ) ) ^
2 )  -  (
( N `  ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) )
5449, 52, 53mp3an23 1271 . . 3  |-  ( ( ( ( ( N `
 ( A G B ) ) ^
2 )  -  (
( N `  ( A G ( -u 1 S B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `
 ( A G ( _i S B ) ) ) ^
2 )  -  (
( N `  ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) )  e.  CC  ->  ( 4  x.  (
( ( ( ( N `  ( A G B ) ) ^ 2 )  -  ( ( N `  ( A G ( -u
1 S B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( A G ( _i S B ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) )  / 
4 ) )  =  ( ( ( ( N `  ( A G B ) ) ^ 2 )  -  ( ( N `  ( A G ( -u
1 S B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( A G ( _i S B ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) )
5548, 54syl 16 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
4  x.  ( ( ( ( ( N `
 ( A G B ) ) ^
2 )  -  (
( N `  ( A G ( -u 1 S B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `
 ( A G ( _i S B ) ) ) ^
2 )  -  (
( N `  ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) )  /  4
) )  =  ( ( ( ( N `
 ( A G B ) ) ^
2 )  -  (
( N `  ( A G ( -u 1 S B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `
 ( A G ( _i S B ) ) ) ^
2 )  -  (
( N `  ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) )
567, 55eqtrd 2440 1  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
4  x.  ( A P B ) )  =  ( ( ( ( N `  ( A G B ) ) ^ 2 )  -  ( ( N `  ( A G ( -u
1 S B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( N `  ( A G ( _i S B ) ) ) ^ 2 )  -  ( ( N `  ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2571   ` cfv 5417  (class class class)co 6044   CCcc 8948   RRcr 8949   0cc0 8950   1c1 8951   _ici 8952    + caddc 8953    x. cmul 8955    - cmin 9251   -ucneg 9252    / cdiv 9637   2c2 10009   4c4 10011   ^cexp 11341   NrmCVeccnv 22020   +vcpv 22021   BaseSetcba 22022   .s
OLDcns 22023   normCVcnmcv 22026   .i OLDcdip 22153
This theorem is referenced by:  ip1ilem  22284  ipasslem10  22297
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-inf2 7556  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027  ax-pre-sup 9028
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-int 4015  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-se 4506  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-isom 5426  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-riota 6512  df-recs 6596  df-rdg 6631  df-1o 6687  df-oadd 6691  df-er 6868  df-en 7073  df-dom 7074  df-sdom 7075  df-fin 7076  df-sup 7408  df-oi 7439  df-card 7786  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-div 9638  df-nn 9961  df-2 10018  df-3 10019  df-4 10020  df-n0 10182  df-z 10243  df-uz 10449  df-rp 10573  df-fz 11004  df-fzo 11095  df-seq 11283  df-exp 11342  df-hash 11578  df-cj 11863  df-re 11864  df-im 11865  df-sqr 11999  df-abs 12000  df-clim 12241  df-sum 12439  df-grpo 21736  df-ablo 21827  df-vc 21982  df-nv 22028  df-va 22031  df-ba 22032  df-sm 22033  df-0v 22034  df-nmcv 22036  df-dip 22154
  Copyright terms: Public domain W3C validator