MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem13 Unicode version

Theorem 4sqlem13 13288
Description: Lemma for 4sq 13295. (Contributed by Mario Carneiro, 16-Jul-2014.)
Hypotheses
Ref Expression
4sq.1  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
4sq.2  |-  ( ph  ->  N  e.  NN )
4sq.3  |-  ( ph  ->  P  =  ( ( 2  x.  N )  +  1 ) )
4sq.4  |-  ( ph  ->  P  e.  Prime )
4sq.5  |-  ( ph  ->  ( 0 ... (
2  x.  N ) )  C_  S )
4sq.6  |-  T  =  { i  e.  NN  |  ( i  x.  P )  e.  S }
4sq.7  |-  M  =  sup ( T ,  RR ,  `'  <  )
Assertion
Ref Expression
4sqlem13  |-  ( ph  ->  ( T  =/=  (/)  /\  M  <  P ) )
Distinct variable groups:    w, n, x, y, z    i, n, M    n, N    P, i, n    ph, n    S, i, n
Allowed substitution hints:    ph( x, y, z, w, i)    P( x, y, z, w)    S( x, y, z, w)    T( x, y, z, w, i, n)    M( x, y, z, w)    N( x, y, z, w, i)

Proof of Theorem 4sqlem13
Dummy variables  k 
v  u  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4sq.1 . . 3  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
2 4sq.2 . . 3  |-  ( ph  ->  N  e.  NN )
3 4sq.3 . . 3  |-  ( ph  ->  P  =  ( ( 2  x.  N )  +  1 ) )
4 4sq.4 . . 3  |-  ( ph  ->  P  e.  Prime )
5 eqid 2412 . . 3  |-  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod  P ) }  =  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod  P ) }
6 eqid 2412 . . 3  |-  ( v  e.  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod  P ) } 
|->  ( ( P  - 
1 )  -  v
) )  =  ( v  e.  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod  P ) } 
|->  ( ( P  - 
1 )  -  v
) )
71, 2, 3, 4, 5, 64sqlem12 13287 . 2  |-  ( ph  ->  E. k  e.  ( 1 ... ( P  -  1 ) ) E. u  e.  ZZ [ _i ]  ( ( ( abs `  u
) ^ 2 )  +  1 )  =  ( k  x.  P
) )
8 simplrl 737 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ [ _i ] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
k  e.  ( 1 ... ( P  - 
1 ) ) )
9 elfznn 11044 . . . . . . . 8  |-  ( k  e.  ( 1 ... ( P  -  1 ) )  ->  k  e.  NN )
108, 9syl 16 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ [ _i ] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
k  e.  NN )
11 simpr 448 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ [ _i ] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )
12 abs1 12065 . . . . . . . . . . . 12  |-  ( abs `  1 )  =  1
1312oveq1i 6058 . . . . . . . . . . 11  |-  ( ( abs `  1 ) ^ 2 )  =  ( 1 ^ 2 )
14 sq1 11439 . . . . . . . . . . 11  |-  ( 1 ^ 2 )  =  1
1513, 14eqtri 2432 . . . . . . . . . 10  |-  ( ( abs `  1 ) ^ 2 )  =  1
1615oveq2i 6059 . . . . . . . . 9  |-  ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  1 ) ^
2 ) )  =  ( ( ( abs `  u ) ^ 2 )  +  1 )
17 simplrr 738 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ [ _i ] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  u  e.  ZZ [ _i ] )
18 1z 10275 . . . . . . . . . . 11  |-  1  e.  ZZ
19 zgz 13264 . . . . . . . . . . 11  |-  ( 1  e.  ZZ  ->  1  e.  ZZ [ _i ]
)
2018, 19ax-mp 8 . . . . . . . . . 10  |-  1  e.  ZZ [ _i ]
2114sqlem4a 13282 . . . . . . . . . 10  |-  ( ( u  e.  ZZ [
_i ]  /\  1  e.  ZZ [ _i ]
)  ->  ( (
( abs `  u
) ^ 2 )  +  ( ( abs `  1 ) ^
2 ) )  e.  S )
2217, 20, 21sylancl 644 . . . . . . . . 9  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ [ _i ] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  1 ) ^ 2 ) )  e.  S )
2316, 22syl5eqelr 2497 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ [ _i ] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
( ( ( abs `  u ) ^ 2 )  +  1 )  e.  S )
2411, 23eqeltrrd 2487 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ [ _i ] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
( k  x.  P
)  e.  S )
25 oveq1 6055 . . . . . . . . 9  |-  ( i  =  k  ->  (
i  x.  P )  =  ( k  x.  P ) )
2625eleq1d 2478 . . . . . . . 8  |-  ( i  =  k  ->  (
( i  x.  P
)  e.  S  <->  ( k  x.  P )  e.  S
) )
27 4sq.6 . . . . . . . 8  |-  T  =  { i  e.  NN  |  ( i  x.  P )  e.  S }
2826, 27elrab2 3062 . . . . . . 7  |-  ( k  e.  T  <->  ( k  e.  NN  /\  ( k  x.  P )  e.  S ) )
2910, 24, 28sylanbrc 646 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ [ _i ] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
k  e.  T )
30 ne0i 3602 . . . . . 6  |-  ( k  e.  T  ->  T  =/=  (/) )
3129, 30syl 16 . . . . 5  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ [ _i ] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  T  =/=  (/) )
32 ssrab2 3396 . . . . . . . . 9  |-  { i  e.  NN  |  ( i  x.  P )  e.  S }  C_  NN
3327, 32eqsstri 3346 . . . . . . . 8  |-  T  C_  NN
34 4sq.7 . . . . . . . . 9  |-  M  =  sup ( T ,  RR ,  `'  <  )
35 nnuz 10485 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
3633, 35sseqtri 3348 . . . . . . . . . 10  |-  T  C_  ( ZZ>= `  1 )
37 infmssuzcl 10523 . . . . . . . . . 10  |-  ( ( T  C_  ( ZZ>= ` 
1 )  /\  T  =/=  (/) )  ->  sup ( T ,  RR ,  `'  <  )  e.  T
)
3836, 31, 37sylancr 645 . . . . . . . . 9  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ [ _i ] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  sup ( T ,  RR ,  `'  <  )  e.  T )
3934, 38syl5eqel 2496 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ [ _i ] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  M  e.  T )
4033, 39sseldi 3314 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ [ _i ] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  M  e.  NN )
4140nnred 9979 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ [ _i ] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  M  e.  RR )
4210nnred 9979 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ [ _i ] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
k  e.  RR )
434ad2antrr 707 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ [ _i ] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  P  e.  Prime )
44 prmnn 13045 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  NN )
4543, 44syl 16 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ [ _i ] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  P  e.  NN )
4645nnred 9979 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ [ _i ] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  P  e.  RR )
47 infmssuzle 10522 . . . . . . . 8  |-  ( ( T  C_  ( ZZ>= ` 
1 )  /\  k  e.  T )  ->  sup ( T ,  RR ,  `'  <  )  <_  k
)
4836, 29, 47sylancr 645 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ [ _i ] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  sup ( T ,  RR ,  `'  <  )  <_ 
k )
4934, 48syl5eqbr 4213 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ [ _i ] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  M  <_  k )
50 prmz 13046 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  ZZ )
5143, 50syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ [ _i ] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  P  e.  ZZ )
52 elfzm11 11079 . . . . . . . . 9  |-  ( ( 1  e.  ZZ  /\  P  e.  ZZ )  ->  ( k  e.  ( 1 ... ( P  -  1 ) )  <-> 
( k  e.  ZZ  /\  1  <_  k  /\  k  <  P ) ) )
5318, 51, 52sylancr 645 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ [ _i ] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
( k  e.  ( 1 ... ( P  -  1 ) )  <-> 
( k  e.  ZZ  /\  1  <_  k  /\  k  <  P ) ) )
548, 53mpbid 202 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ [ _i ] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
( k  e.  ZZ  /\  1  <_  k  /\  k  <  P ) )
5554simp3d 971 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ [ _i ] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
k  <  P )
5641, 42, 46, 49, 55lelttrd 9192 . . . . 5  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ [ _i ] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  M  <  P )
5731, 56jca 519 . . . 4  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ [ _i ] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
( T  =/=  (/)  /\  M  <  P ) )
5857ex 424 . . 3  |-  ( (
ph  /\  ( k  e.  ( 1 ... ( P  -  1 ) )  /\  u  e.  ZZ [ _i ]
) )  ->  (
( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P )  ->  ( T  =/=  (/)  /\  M  < 
P ) ) )
5958rexlimdvva 2805 . 2  |-  ( ph  ->  ( E. k  e.  ( 1 ... ( P  -  1 ) ) E. u  e.  ZZ [ _i ] 
( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P )  ->  ( T  =/=  (/)  /\  M  < 
P ) ) )
607, 59mpd 15 1  |-  ( ph  ->  ( T  =/=  (/)  /\  M  <  P ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   {cab 2398    =/= wne 2575   E.wrex 2675   {crab 2678    C_ wss 3288   (/)c0 3596   class class class wbr 4180    e. cmpt 4234   `'ccnv 4844   ` cfv 5421  (class class class)co 6048   supcsup 7411   RRcr 8953   0cc0 8954   1c1 8955    + caddc 8957    x. cmul 8959    < clt 9084    <_ cle 9085    - cmin 9255   NNcn 9964   2c2 10013   ZZcz 10246   ZZ>=cuz 10452   ...cfz 11007    mod cmo 11213   ^cexp 11345   abscabs 12002   Primecprime 13042   ZZ [ _i ]cgz 13260
This theorem is referenced by:  4sqlem14  13289  4sqlem17  13292  4sqlem18  13293
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031  ax-pre-sup 9032
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-riota 6516  df-recs 6600  df-rdg 6635  df-1o 6691  df-2o 6692  df-oadd 6695  df-er 6872  df-en 7077  df-dom 7078  df-sdom 7079  df-fin 7080  df-sup 7412  df-card 7790  df-cda 8012  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-div 9642  df-nn 9965  df-2 10022  df-3 10023  df-4 10024  df-n0 10186  df-z 10247  df-uz 10453  df-rp 10577  df-fz 11008  df-fl 11165  df-mod 11214  df-seq 11287  df-exp 11346  df-hash 11582  df-cj 11867  df-re 11868  df-im 11869  df-sqr 12003  df-abs 12004  df-dvds 12816  df-gcd 12970  df-prm 13043  df-gz 13261
  Copyright terms: Public domain W3C validator