MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem18 Structured version   Unicode version

Theorem 4sqlem18 13322
Description: Lemma for 4sq 13324. Inductive step, odd prime case. (Contributed by Mario Carneiro, 16-Jul-2014.)
Hypotheses
Ref Expression
4sq.1  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
4sq.2  |-  ( ph  ->  N  e.  NN )
4sq.3  |-  ( ph  ->  P  =  ( ( 2  x.  N )  +  1 ) )
4sq.4  |-  ( ph  ->  P  e.  Prime )
4sq.5  |-  ( ph  ->  ( 0 ... (
2  x.  N ) )  C_  S )
4sq.6  |-  T  =  { i  e.  NN  |  ( i  x.  P )  e.  S }
4sq.7  |-  M  =  sup ( T ,  RR ,  `'  <  )
Assertion
Ref Expression
4sqlem18  |-  ( ph  ->  P  e.  S )
Distinct variable groups:    w, n, x, y, z    i, n, M    n, N    P, i, n    ph, n    S, i, n
Allowed substitution hints:    ph( x, y, z, w, i)    P( x, y, z, w)    S( x, y, z, w)    T( x, y, z, w, i, n)    M( x, y, z, w)    N( x, y, z, w, i)

Proof of Theorem 4sqlem18
Dummy variables  a 
b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4sq.4 . . . . 5  |-  ( ph  ->  P  e.  Prime )
2 prmnn 13074 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  NN )
31, 2syl 16 . . . 4  |-  ( ph  ->  P  e.  NN )
43nncnd 10008 . . 3  |-  ( ph  ->  P  e.  CC )
54mulid2d 9098 . 2  |-  ( ph  ->  ( 1  x.  P
)  =  P )
6 4sq.7 . . . . . . . . . . . 12  |-  M  =  sup ( T ,  RR ,  `'  <  )
7 4sq.6 . . . . . . . . . . . . . . 15  |-  T  =  { i  e.  NN  |  ( i  x.  P )  e.  S }
8 ssrab2 3420 . . . . . . . . . . . . . . 15  |-  { i  e.  NN  |  ( i  x.  P )  e.  S }  C_  NN
97, 8eqsstri 3370 . . . . . . . . . . . . . 14  |-  T  C_  NN
10 nnuz 10513 . . . . . . . . . . . . . 14  |-  NN  =  ( ZZ>= `  1 )
119, 10sseqtri 3372 . . . . . . . . . . . . 13  |-  T  C_  ( ZZ>= `  1 )
12 4sq.1 . . . . . . . . . . . . . . 15  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
13 4sq.2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  N  e.  NN )
14 4sq.3 . . . . . . . . . . . . . . 15  |-  ( ph  ->  P  =  ( ( 2  x.  N )  +  1 ) )
15 4sq.5 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 0 ... (
2  x.  N ) )  C_  S )
1612, 13, 14, 1, 15, 7, 64sqlem13 13317 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( T  =/=  (/)  /\  M  <  P ) )
1716simpld 446 . . . . . . . . . . . . 13  |-  ( ph  ->  T  =/=  (/) )
18 infmssuzcl 10551 . . . . . . . . . . . . 13  |-  ( ( T  C_  ( ZZ>= ` 
1 )  /\  T  =/=  (/) )  ->  sup ( T ,  RR ,  `'  <  )  e.  T
)
1911, 17, 18sylancr 645 . . . . . . . . . . . 12  |-  ( ph  ->  sup ( T ,  RR ,  `'  <  )  e.  T )
206, 19syl5eqel 2519 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  T )
21 oveq1 6080 . . . . . . . . . . . . 13  |-  ( i  =  M  ->  (
i  x.  P )  =  ( M  x.  P ) )
2221eleq1d 2501 . . . . . . . . . . . 12  |-  ( i  =  M  ->  (
( i  x.  P
)  e.  S  <->  ( M  x.  P )  e.  S
) )
2322, 7elrab2 3086 . . . . . . . . . . 11  |-  ( M  e.  T  <->  ( M  e.  NN  /\  ( M  x.  P )  e.  S ) )
2420, 23sylib 189 . . . . . . . . . 10  |-  ( ph  ->  ( M  e.  NN  /\  ( M  x.  P
)  e.  S ) )
2524simprd 450 . . . . . . . . 9  |-  ( ph  ->  ( M  x.  P
)  e.  S )
26124sqlem2 13309 . . . . . . . . 9  |-  ( ( M  x.  P )  e.  S  <->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  ( M  x.  P )  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )
2725, 26sylib 189 . . . . . . . 8  |-  ( ph  ->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  ( M  x.  P )  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )
2827adantr 452 . . . . . . 7  |-  ( (
ph  /\  M  e.  ( ZZ>= `  2 )
)  ->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  ( M  x.  P )  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )
29 simp1l 981 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  ph )
3029, 13syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  N  e.  NN )
3129, 14syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  P  =  ( ( 2  x.  N )  +  1 ) )
3229, 1syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  P  e.  Prime )
3329, 15syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  (
0 ... ( 2  x.  N ) )  C_  S )
34 simp1r 982 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  M  e.  ( ZZ>= `  2 )
)
35 simp2ll 1024 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  a  e.  ZZ )
36 simp2lr 1025 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  b  e.  ZZ )
37 simp2rl 1026 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  c  e.  ZZ )
38 simp2rr 1027 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  d  e.  ZZ )
39 eqid 2435 . . . . . . . . . . . . 13  |-  ( ( ( a  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  =  ( ( ( a  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
40 eqid 2435 . . . . . . . . . . . . 13  |-  ( ( ( b  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  =  ( ( ( b  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
41 eqid 2435 . . . . . . . . . . . . 13  |-  ( ( ( c  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  =  ( ( ( c  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
42 eqid 2435 . . . . . . . . . . . . 13  |-  ( ( ( d  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  =  ( ( ( d  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
43 eqid 2435 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( a  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) ) ^
2 )  +  ( ( ( ( b  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) ) ^ 2 ) )  +  ( ( ( ( ( c  +  ( M  /  2
) )  mod  M
)  -  ( M  /  2 ) ) ^ 2 )  +  ( ( ( ( d  +  ( M  /  2 ) )  mod  M )  -  ( M  /  2
) ) ^ 2 ) ) )  /  M )  =  ( ( ( ( ( ( ( a  +  ( M  /  2
) )  mod  M
)  -  ( M  /  2 ) ) ^ 2 )  +  ( ( ( ( b  +  ( M  /  2 ) )  mod  M )  -  ( M  /  2
) ) ^ 2 ) )  +  ( ( ( ( ( c  +  ( M  /  2 ) )  mod  M )  -  ( M  /  2
) ) ^ 2 )  +  ( ( ( ( d  +  ( M  /  2
) )  mod  M
)  -  ( M  /  2 ) ) ^ 2 ) ) )  /  M )
44 simp3 959 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) ) )
4512, 30, 31, 32, 33, 7, 6, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 444sqlem17 13321 . . . . . . . . . . . 12  |-  -.  (
( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )
4645pm2.21i 125 . . . . . . . . . . 11  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  -.  M  e.  ( ZZ>= ` 
2 ) )
47463expia 1155 . . . . . . . . . 10  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) ) )  ->  (
( M  x.  P
)  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  ->  -.  M  e.  ( ZZ>=
`  2 ) ) )
4847anassrs 630 . . . . . . . . 9  |-  ( ( ( ( ph  /\  M  e.  ( ZZ>= ` 
2 ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( ( M  x.  P )  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  -.  M  e.  ( ZZ>= `  2 )
) )
4948rexlimdvva 2829 . . . . . . . 8  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( E. c  e.  ZZ  E. d  e.  ZZ  ( M  x.  P )  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  -.  M  e.  ( ZZ>= `  2 )
) )
5049rexlimdvva 2829 . . . . . . 7  |-  ( (
ph  /\  M  e.  ( ZZ>= `  2 )
)  ->  ( E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  ( M  x.  P )  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  -.  M  e.  ( ZZ>= `  2 )
) )
5128, 50mpd 15 . . . . . 6  |-  ( (
ph  /\  M  e.  ( ZZ>= `  2 )
)  ->  -.  M  e.  ( ZZ>= `  2 )
)
5251pm2.01da 430 . . . . 5  |-  ( ph  ->  -.  M  e.  (
ZZ>= `  2 ) )
5324simpld 446 . . . . . . 7  |-  ( ph  ->  M  e.  NN )
54 elnn1uz2 10544 . . . . . . 7  |-  ( M  e.  NN  <->  ( M  =  1  \/  M  e.  ( ZZ>= `  2 )
) )
5553, 54sylib 189 . . . . . 6  |-  ( ph  ->  ( M  =  1  \/  M  e.  (
ZZ>= `  2 ) ) )
5655ord 367 . . . . 5  |-  ( ph  ->  ( -.  M  =  1  ->  M  e.  ( ZZ>= `  2 )
) )
5752, 56mt3d 119 . . . 4  |-  ( ph  ->  M  =  1 )
5857, 20eqeltrrd 2510 . . 3  |-  ( ph  ->  1  e.  T )
59 oveq1 6080 . . . . . 6  |-  ( i  =  1  ->  (
i  x.  P )  =  ( 1  x.  P ) )
6059eleq1d 2501 . . . . 5  |-  ( i  =  1  ->  (
( i  x.  P
)  e.  S  <->  ( 1  x.  P )  e.  S ) )
6160, 7elrab2 3086 . . . 4  |-  ( 1  e.  T  <->  ( 1  e.  NN  /\  (
1  x.  P )  e.  S ) )
6261simprbi 451 . . 3  |-  ( 1  e.  T  ->  (
1  x.  P )  e.  S )
6358, 62syl 16 . 2  |-  ( ph  ->  ( 1  x.  P
)  e.  S )
645, 63eqeltrrd 2510 1  |-  ( ph  ->  P  e.  S )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   {cab 2421    =/= wne 2598   E.wrex 2698   {crab 2701    C_ wss 3312   (/)c0 3620   class class class wbr 4204   `'ccnv 4869   ` cfv 5446  (class class class)co 6073   supcsup 7437   RRcr 8981   0cc0 8982   1c1 8983    + caddc 8985    x. cmul 8987    < clt 9112    - cmin 9283    / cdiv 9669   NNcn 9992   2c2 10041   ZZcz 10274   ZZ>=cuz 10480   ...cfz 11035    mod cmo 11242   ^cexp 11374   Primecprime 13071
This theorem is referenced by:  4sqlem19  13323
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-card 7818  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-fz 11036  df-fl 11194  df-mod 11243  df-seq 11316  df-exp 11375  df-hash 11611  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-dvds 12845  df-gcd 12999  df-prm 13072  df-gz 13290
  Copyright terms: Public domain W3C validator