MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem4 Unicode version

Theorem 4sqlem4 12999
Description: Lemma for 4sq 13011. We can express the four-square property more compactly in terms of gaussian integers, because the norms of gaussian integers are exactly sums of two squares. (Contributed by Mario Carneiro, 14-Jul-2014.)
Hypothesis
Ref Expression
4sq.1  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
Assertion
Ref Expression
4sqlem4  |-  ( A  e.  S  <->  E. u  e.  ZZ [ _i ]  E. v  e.  ZZ [ _i ]  A  =  ( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) )
Distinct variable groups:    w, n, x, y, z    v, n, A, u    S, n, u, v    u, A
Allowed substitution hints:    A( x, y, z, w)    S( x, y, z, w)

Proof of Theorem 4sqlem4
Dummy variables  a 
b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4sq.1 . . . 4  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
214sqlem2 12996 . . 3  |-  ( A  e.  S  <->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )
3 gzreim 12986 . . . . . . . 8  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( a  +  ( _i  x.  b ) )  e.  ZZ [
_i ] )
43adantr 451 . . . . . . 7  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( a  +  ( _i  x.  b ) )  e.  ZZ [
_i ] )
5 gzreim 12986 . . . . . . . 8  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( c  +  ( _i  x.  d ) )  e.  ZZ [
_i ] )
65adantl 452 . . . . . . 7  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( c  +  ( _i  x.  d ) )  e.  ZZ [
_i ] )
7 gzcn 12979 . . . . . . . . . . . 12  |-  ( ( a  +  ( _i  x.  b ) )  e.  ZZ [ _i ]  ->  ( a  +  ( _i  x.  b
) )  e.  CC )
83, 7syl 15 . . . . . . . . . . 11  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( a  +  ( _i  x.  b ) )  e.  CC )
98absvalsq2d 11925 . . . . . . . . . 10  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  =  ( ( ( Re `  ( a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( Im `  ( a  +  ( _i  x.  b ) ) ) ^ 2 ) ) )
10 zre 10028 . . . . . . . . . . . . 13  |-  ( a  e.  ZZ  ->  a  e.  RR )
11 zre 10028 . . . . . . . . . . . . 13  |-  ( b  e.  ZZ  ->  b  e.  RR )
12 crre 11599 . . . . . . . . . . . . 13  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( Re `  (
a  +  ( _i  x.  b ) ) )  =  a )
1310, 11, 12syl2an 463 . . . . . . . . . . . 12  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( Re `  (
a  +  ( _i  x.  b ) ) )  =  a )
1413oveq1d 5873 . . . . . . . . . . 11  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( Re `  ( a  +  ( _i  x.  b ) ) ) ^ 2 )  =  ( a ^ 2 ) )
15 crim 11600 . . . . . . . . . . . . 13  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( Im `  (
a  +  ( _i  x.  b ) ) )  =  b )
1610, 11, 15syl2an 463 . . . . . . . . . . . 12  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( Im `  (
a  +  ( _i  x.  b ) ) )  =  b )
1716oveq1d 5873 . . . . . . . . . . 11  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( Im `  ( a  +  ( _i  x.  b ) ) ) ^ 2 )  =  ( b ^ 2 ) )
1814, 17oveq12d 5876 . . . . . . . . . 10  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( ( Re
`  ( a  +  ( _i  x.  b
) ) ) ^
2 )  +  ( ( Im `  (
a  +  ( _i  x.  b ) ) ) ^ 2 ) )  =  ( ( a ^ 2 )  +  ( b ^
2 ) ) )
199, 18eqtrd 2315 . . . . . . . . 9  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  =  ( ( a ^ 2 )  +  ( b ^ 2 ) ) )
20 gzcn 12979 . . . . . . . . . . . 12  |-  ( ( c  +  ( _i  x.  d ) )  e.  ZZ [ _i ]  ->  ( c  +  ( _i  x.  d
) )  e.  CC )
215, 20syl 15 . . . . . . . . . . 11  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( c  +  ( _i  x.  d ) )  e.  CC )
2221absvalsq2d 11925 . . . . . . . . . 10  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( ( abs `  (
c  +  ( _i  x.  d ) ) ) ^ 2 )  =  ( ( ( Re `  ( c  +  ( _i  x.  d ) ) ) ^ 2 )  +  ( ( Im `  ( c  +  ( _i  x.  d ) ) ) ^ 2 ) ) )
23 zre 10028 . . . . . . . . . . . . 13  |-  ( c  e.  ZZ  ->  c  e.  RR )
24 zre 10028 . . . . . . . . . . . . 13  |-  ( d  e.  ZZ  ->  d  e.  RR )
25 crre 11599 . . . . . . . . . . . . 13  |-  ( ( c  e.  RR  /\  d  e.  RR )  ->  ( Re `  (
c  +  ( _i  x.  d ) ) )  =  c )
2623, 24, 25syl2an 463 . . . . . . . . . . . 12  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( Re `  (
c  +  ( _i  x.  d ) ) )  =  c )
2726oveq1d 5873 . . . . . . . . . . 11  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( ( Re `  ( c  +  ( _i  x.  d ) ) ) ^ 2 )  =  ( c ^ 2 ) )
28 crim 11600 . . . . . . . . . . . . 13  |-  ( ( c  e.  RR  /\  d  e.  RR )  ->  ( Im `  (
c  +  ( _i  x.  d ) ) )  =  d )
2923, 24, 28syl2an 463 . . . . . . . . . . . 12  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( Im `  (
c  +  ( _i  x.  d ) ) )  =  d )
3029oveq1d 5873 . . . . . . . . . . 11  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( ( Im `  ( c  +  ( _i  x.  d ) ) ) ^ 2 )  =  ( d ^ 2 ) )
3127, 30oveq12d 5876 . . . . . . . . . 10  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( ( ( Re
`  ( c  +  ( _i  x.  d
) ) ) ^
2 )  +  ( ( Im `  (
c  +  ( _i  x.  d ) ) ) ^ 2 ) )  =  ( ( c ^ 2 )  +  ( d ^
2 ) ) )
3222, 31eqtrd 2315 . . . . . . . . 9  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( ( abs `  (
c  +  ( _i  x.  d ) ) ) ^ 2 )  =  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )
3319, 32oveqan12d 5877 . . . . . . . 8  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( ( ( abs `  ( a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  ( c  +  ( _i  x.  d ) ) ) ^ 2 ) )  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) ) )
3433eqcomd 2288 . . . . . . 7  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  ( c  +  ( _i  x.  d ) ) ) ^ 2 ) ) )
35 fveq2 5525 . . . . . . . . . . 11  |-  ( u  =  ( a  +  ( _i  x.  b
) )  ->  ( abs `  u )  =  ( abs `  (
a  +  ( _i  x.  b ) ) ) )
3635oveq1d 5873 . . . . . . . . . 10  |-  ( u  =  ( a  +  ( _i  x.  b
) )  ->  (
( abs `  u
) ^ 2 )  =  ( ( abs `  ( a  +  ( _i  x.  b ) ) ) ^ 2 ) )
3736oveq1d 5873 . . . . . . . . 9  |-  ( u  =  ( a  +  ( _i  x.  b
) )  ->  (
( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  =  ( ( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) )
3837eqeq2d 2294 . . . . . . . 8  |-  ( u  =  ( a  +  ( _i  x.  b
) )  ->  (
( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  <->  ( (
( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  ( a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) ) )
39 fveq2 5525 . . . . . . . . . . 11  |-  ( v  =  ( c  +  ( _i  x.  d
) )  ->  ( abs `  v )  =  ( abs `  (
c  +  ( _i  x.  d ) ) ) )
4039oveq1d 5873 . . . . . . . . . 10  |-  ( v  =  ( c  +  ( _i  x.  d
) )  ->  (
( abs `  v
) ^ 2 )  =  ( ( abs `  ( c  +  ( _i  x.  d ) ) ) ^ 2 ) )
4140oveq2d 5874 . . . . . . . . 9  |-  ( v  =  ( c  +  ( _i  x.  d
) )  ->  (
( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  =  ( ( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  ( c  +  ( _i  x.  d ) ) ) ^ 2 ) ) )
4241eqeq2d 2294 . . . . . . . 8  |-  ( v  =  ( c  +  ( _i  x.  d
) )  ->  (
( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  <->  ( (
( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  ( a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  ( c  +  ( _i  x.  d ) ) ) ^ 2 ) ) ) )
4338, 42rspc2ev 2892 . . . . . . 7  |-  ( ( ( a  +  ( _i  x.  b ) )  e.  ZZ [
_i ]  /\  (
c  +  ( _i  x.  d ) )  e.  ZZ [ _i ]  /\  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  ( c  +  ( _i  x.  d ) ) ) ^ 2 ) ) )  ->  E. u  e.  ZZ [ _i ]  E. v  e.  ZZ [ _i ] 
( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) )
444, 6, 34, 43syl3anc 1182 . . . . . 6  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  ->  E. u  e.  ZZ [ _i ]  E. v  e.  ZZ [ _i ] 
( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) )
45 eqeq1 2289 . . . . . . 7  |-  ( A  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) )  ->  ( A  =  ( (
( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  <->  ( (
( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) ) )
46452rexbidv 2586 . . . . . 6  |-  ( A  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) )  ->  ( E. u  e.  ZZ [ _i ]  E. v  e.  ZZ [ _i ]  A  =  ( (
( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  <->  E. u  e.  ZZ [ _i ]  E. v  e.  ZZ [ _i ]  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) ) )
4744, 46syl5ibrcom 213 . . . . 5  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  E. u  e.  ZZ [ _i ]  E. v  e.  ZZ [ _i ]  A  =  ( (
( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) ) )
4847rexlimdvva 2674 . . . 4  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  E. u  e.  ZZ [ _i ]  E. v  e.  ZZ [ _i ]  A  =  ( (
( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) ) )
4948rexlimivv 2672 . . 3  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  E. u  e.  ZZ [ _i ]  E. v  e.  ZZ [ _i ]  A  =  ( (
( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) )
502, 49sylbi 187 . 2  |-  ( A  e.  S  ->  E. u  e.  ZZ [ _i ]  E. v  e.  ZZ [ _i ]  A  =  ( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) )
5114sqlem4a 12998 . . . 4  |-  ( ( u  e.  ZZ [
_i ]  /\  v  e.  ZZ [ _i ]
)  ->  ( (
( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  e.  S
)
52 eleq1a 2352 . . . 4  |-  ( ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  e.  S  ->  ( A  =  ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  ->  A  e.  S ) )
5351, 52syl 15 . . 3  |-  ( ( u  e.  ZZ [
_i ]  /\  v  e.  ZZ [ _i ]
)  ->  ( A  =  ( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  v
) ^ 2 ) )  ->  A  e.  S ) )
5453rexlimivv 2672 . 2  |-  ( E. u  e.  ZZ [
_i ]  E. v  e.  ZZ [ _i ]  A  =  ( (
( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  ->  A  e.  S )
5550, 54impbii 180 1  |-  ( A  e.  S  <->  E. u  e.  ZZ [ _i ]  E. v  e.  ZZ [ _i ]  A  =  ( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   {cab 2269   E.wrex 2544   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   _ici 8739    + caddc 8740    x. cmul 8742   2c2 9795   ZZcz 10024   ^cexp 11104   Recre 11582   Imcim 11583   abscabs 11719   ZZ [ _i ]cgz 12976
This theorem is referenced by:  mul4sq  13001
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-gz 12977
  Copyright terms: Public domain W3C validator