HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  5oalem5 Unicode version

Theorem 5oalem5 22237
Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-May-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
5oalem5.1  |-  A  e.  SH
5oalem5.2  |-  B  e.  SH
5oalem5.3  |-  C  e.  SH
5oalem5.4  |-  D  e.  SH
5oalem5.5  |-  F  e.  SH
5oalem5.6  |-  G  e.  SH
5oalem5.7  |-  R  e.  SH
5oalem5.8  |-  S  e.  SH
Assertion
Ref Expression
5oalem5  |-  ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( (
f  e.  F  /\  g  e.  G )  /\  ( v  e.  R  /\  u  e.  S
) ) )  /\  ( ( ( x  +h  y )  =  ( v  +h  u
)  /\  ( z  +h  w )  =  ( v  +h  u ) )  /\  ( f  +h  g )  =  ( v  +h  u
) ) )  -> 
( x  -h  z
)  e.  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S ) ) ) )  i^i  (
( ( ( A  +H  F )  i^i  ( B  +H  G
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S
) ) ) )  +H  ( ( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) ) )

Proof of Theorem 5oalem5
StepHypRef Expression
1 simpr 447 . . . 4  |-  ( ( ( f  e.  F  /\  g  e.  G
)  /\  ( v  e.  R  /\  u  e.  S ) )  -> 
( v  e.  R  /\  u  e.  S
) )
21anim2i 552 . . 3  |-  ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( (
f  e.  F  /\  g  e.  G )  /\  ( v  e.  R  /\  u  e.  S
) ) )  -> 
( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( v  e.  R  /\  u  e.  S ) ) )
3 simpl 443 . . 3  |-  ( ( ( ( x  +h  y )  =  ( v  +h  u )  /\  ( z  +h  w )  =  ( v  +h  u ) )  /\  ( f  +h  g )  =  ( v  +h  u
) )  ->  (
( x  +h  y
)  =  ( v  +h  u )  /\  ( z  +h  w
)  =  ( v  +h  u ) ) )
4 5oalem5.1 . . . 4  |-  A  e.  SH
5 5oalem5.2 . . . 4  |-  B  e.  SH
6 5oalem5.3 . . . 4  |-  C  e.  SH
7 5oalem5.4 . . . 4  |-  D  e.  SH
8 5oalem5.7 . . . 4  |-  R  e.  SH
9 5oalem5.8 . . . 4  |-  S  e.  SH
104, 5, 6, 7, 8, 95oalem4 22236 . . 3  |-  ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( v  e.  R  /\  u  e.  S ) )  /\  ( ( x  +h  y )  =  ( v  +h  u )  /\  ( z  +h  w )  =  ( v  +h  u ) ) )  ->  (
x  -h  z )  e.  ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) ) )
112, 3, 10syl2an 463 . 2  |-  ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( (
f  e.  F  /\  g  e.  G )  /\  ( v  e.  R  /\  u  e.  S
) ) )  /\  ( ( ( x  +h  y )  =  ( v  +h  u
)  /\  ( z  +h  w )  =  ( v  +h  u ) )  /\  ( f  +h  g )  =  ( v  +h  u
) ) )  -> 
( x  -h  z
)  e.  ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) ) )
124sheli 21793 . . . . . . . 8  |-  ( x  e.  A  ->  x  e.  ~H )
1312adantr 451 . . . . . . 7  |-  ( ( x  e.  A  /\  y  e.  B )  ->  x  e.  ~H )
146sheli 21793 . . . . . . . 8  |-  ( z  e.  C  ->  z  e.  ~H )
1514adantr 451 . . . . . . 7  |-  ( ( z  e.  C  /\  w  e.  D )  ->  z  e.  ~H )
1613, 15anim12i 549 . . . . . 6  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ( z  e.  C  /\  w  e.  D ) )  -> 
( x  e.  ~H  /\  z  e.  ~H )
)
17 5oalem5.5 . . . . . . . 8  |-  F  e.  SH
1817sheli 21793 . . . . . . 7  |-  ( f  e.  F  ->  f  e.  ~H )
1918adantr 451 . . . . . 6  |-  ( ( f  e.  F  /\  g  e.  G )  ->  f  e.  ~H )
20 hvsubsub4 21639 . . . . . . . 8  |-  ( ( ( x  e.  ~H  /\  f  e.  ~H )  /\  ( z  e.  ~H  /\  f  e.  ~H )
)  ->  ( (
x  -h  f )  -h  ( z  -h  f ) )  =  ( ( x  -h  z )  -h  (
f  -h  f ) ) )
2120anandirs 804 . . . . . . 7  |-  ( ( ( x  e.  ~H  /\  z  e.  ~H )  /\  f  e.  ~H )  ->  ( ( x  -h  f )  -h  ( z  -h  f
) )  =  ( ( x  -h  z
)  -h  ( f  -h  f ) ) )
22 hvsubid 21605 . . . . . . . . 9  |-  ( f  e.  ~H  ->  (
f  -h  f )  =  0h )
2322oveq2d 5874 . . . . . . . 8  |-  ( f  e.  ~H  ->  (
( x  -h  z
)  -h  ( f  -h  f ) )  =  ( ( x  -h  z )  -h 
0h ) )
24 hvsubcl 21597 . . . . . . . . 9  |-  ( ( x  e.  ~H  /\  z  e.  ~H )  ->  ( x  -h  z
)  e.  ~H )
25 hvsub0 21655 . . . . . . . . 9  |-  ( ( x  -h  z )  e.  ~H  ->  (
( x  -h  z
)  -h  0h )  =  ( x  -h  z ) )
2624, 25syl 15 . . . . . . . 8  |-  ( ( x  e.  ~H  /\  z  e.  ~H )  ->  ( ( x  -h  z )  -h  0h )  =  ( x  -h  z ) )
2723, 26sylan9eqr 2337 . . . . . . 7  |-  ( ( ( x  e.  ~H  /\  z  e.  ~H )  /\  f  e.  ~H )  ->  ( ( x  -h  z )  -h  ( f  -h  f
) )  =  ( x  -h  z ) )
2821, 27eqtrd 2315 . . . . . 6  |-  ( ( ( x  e.  ~H  /\  z  e.  ~H )  /\  f  e.  ~H )  ->  ( ( x  -h  f )  -h  ( z  -h  f
) )  =  ( x  -h  z ) )
2916, 19, 28syl2an 463 . . . . 5  |-  ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( f  e.  F  /\  g  e.  G ) )  -> 
( ( x  -h  f )  -h  (
z  -h  f ) )  =  ( x  -h  z ) )
3029adantrr 697 . . . 4  |-  ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( (
f  e.  F  /\  g  e.  G )  /\  ( v  e.  R  /\  u  e.  S
) ) )  -> 
( ( x  -h  f )  -h  (
z  -h  f ) )  =  ( x  -h  z ) )
3130adantr 451 . . 3  |-  ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( (
f  e.  F  /\  g  e.  G )  /\  ( v  e.  R  /\  u  e.  S
) ) )  /\  ( ( ( x  +h  y )  =  ( v  +h  u
)  /\  ( z  +h  w )  =  ( v  +h  u ) )  /\  ( f  +h  g )  =  ( v  +h  u
) ) )  -> 
( ( x  -h  f )  -h  (
z  -h  f ) )  =  ( x  -h  z ) )
32 simpl 443 . . . . . . . 8  |-  ( ( ( f  e.  F  /\  g  e.  G
)  /\  ( v  e.  R  /\  u  e.  S ) )  -> 
( f  e.  F  /\  g  e.  G
) )
3332anim2i 552 . . . . . . 7  |-  ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( (
f  e.  F  /\  g  e.  G )  /\  ( v  e.  R  /\  u  e.  S
) ) )  -> 
( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( f  e.  F  /\  g  e.  G ) ) )
34 anandir 802 . . . . . . 7  |-  ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( f  e.  F  /\  g  e.  G ) )  <->  ( (
( x  e.  A  /\  y  e.  B
)  /\  ( f  e.  F  /\  g  e.  G ) )  /\  ( ( z  e.  C  /\  w  e.  D )  /\  (
f  e.  F  /\  g  e.  G )
) ) )
3533, 34sylib 188 . . . . . 6  |-  ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( (
f  e.  F  /\  g  e.  G )  /\  ( v  e.  R  /\  u  e.  S
) ) )  -> 
( ( ( x  e.  A  /\  y  e.  B )  /\  (
f  e.  F  /\  g  e.  G )
)  /\  ( (
z  e.  C  /\  w  e.  D )  /\  ( f  e.  F  /\  g  e.  G
) ) ) )
36 simprr 733 . . . . . 6  |-  ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( (
f  e.  F  /\  g  e.  G )  /\  ( v  e.  R  /\  u  e.  S
) ) )  -> 
( v  e.  R  /\  u  e.  S
) )
3735, 36jca 518 . . . . 5  |-  ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( (
f  e.  F  /\  g  e.  G )  /\  ( v  e.  R  /\  u  e.  S
) ) )  -> 
( ( ( ( x  e.  A  /\  y  e.  B )  /\  ( f  e.  F  /\  g  e.  G
) )  /\  (
( z  e.  C  /\  w  e.  D
)  /\  ( f  e.  F  /\  g  e.  G ) ) )  /\  ( v  e.  R  /\  u  e.  S ) ) )
38 simpl 443 . . . . . . 7  |-  ( ( ( x  +h  y
)  =  ( v  +h  u )  /\  ( z  +h  w
)  =  ( v  +h  u ) )  ->  ( x  +h  y )  =  ( v  +h  u ) )
3938anim1i 551 . . . . . 6  |-  ( ( ( ( x  +h  y )  =  ( v  +h  u )  /\  ( z  +h  w )  =  ( v  +h  u ) )  /\  ( f  +h  g )  =  ( v  +h  u
) )  ->  (
( x  +h  y
)  =  ( v  +h  u )  /\  ( f  +h  g
)  =  ( v  +h  u ) ) )
40 simpr 447 . . . . . . 7  |-  ( ( ( x  +h  y
)  =  ( v  +h  u )  /\  ( z  +h  w
)  =  ( v  +h  u ) )  ->  ( z  +h  w )  =  ( v  +h  u ) )
4140anim1i 551 . . . . . 6  |-  ( ( ( ( x  +h  y )  =  ( v  +h  u )  /\  ( z  +h  w )  =  ( v  +h  u ) )  /\  ( f  +h  g )  =  ( v  +h  u
) )  ->  (
( z  +h  w
)  =  ( v  +h  u )  /\  ( f  +h  g
)  =  ( v  +h  u ) ) )
4239, 41jca 518 . . . . 5  |-  ( ( ( ( x  +h  y )  =  ( v  +h  u )  /\  ( z  +h  w )  =  ( v  +h  u ) )  /\  ( f  +h  g )  =  ( v  +h  u
) )  ->  (
( ( x  +h  y )  =  ( v  +h  u )  /\  ( f  +h  g )  =  ( v  +h  u ) )  /\  ( ( z  +h  w )  =  ( v  +h  u )  /\  (
f  +h  g )  =  ( v  +h  u ) ) ) )
43 anandir 802 . . . . . 6  |-  ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
f  e.  F  /\  g  e.  G )
)  /\  ( (
z  e.  C  /\  w  e.  D )  /\  ( f  e.  F  /\  g  e.  G
) ) )  /\  ( v  e.  R  /\  u  e.  S
) )  <->  ( (
( ( x  e.  A  /\  y  e.  B )  /\  (
f  e.  F  /\  g  e.  G )
)  /\  ( v  e.  R  /\  u  e.  S ) )  /\  ( ( ( z  e.  C  /\  w  e.  D )  /\  (
f  e.  F  /\  g  e.  G )
)  /\  ( v  e.  R  /\  u  e.  S ) ) ) )
44 5oalem5.6 . . . . . . . . 9  |-  G  e.  SH
454, 5, 17, 44, 8, 95oalem4 22236 . . . . . . . 8  |-  ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
f  e.  F  /\  g  e.  G )
)  /\  ( v  e.  R  /\  u  e.  S ) )  /\  ( ( x  +h  y )  =  ( v  +h  u )  /\  ( f  +h  g )  =  ( v  +h  u ) ) )  ->  (
x  -h  f )  e.  ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) )
466, 7, 17, 44, 8, 95oalem4 22236 . . . . . . . 8  |-  ( ( ( ( ( z  e.  C  /\  w  e.  D )  /\  (
f  e.  F  /\  g  e.  G )
)  /\  ( v  e.  R  /\  u  e.  S ) )  /\  ( ( z  +h  w )  =  ( v  +h  u )  /\  ( f  +h  g )  =  ( v  +h  u ) ) )  ->  (
z  -h  f )  e.  ( ( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) )
4745, 46anim12i 549 . . . . . . 7  |-  ( ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  ( f  e.  F  /\  g  e.  G
) )  /\  (
v  e.  R  /\  u  e.  S )
)  /\  ( (
x  +h  y )  =  ( v  +h  u )  /\  (
f  +h  g )  =  ( v  +h  u ) ) )  /\  ( ( ( ( z  e.  C  /\  w  e.  D
)  /\  ( f  e.  F  /\  g  e.  G ) )  /\  ( v  e.  R  /\  u  e.  S
) )  /\  (
( z  +h  w
)  =  ( v  +h  u )  /\  ( f  +h  g
)  =  ( v  +h  u ) ) ) )  ->  (
( x  -h  f
)  e.  ( ( ( A  +H  F
)  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  /\  ( z  -h  f )  e.  ( ( ( C  +H  F )  i^i  ( D  +H  G
) )  i^i  (
( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S
) ) ) ) ) )
4847an4s 799 . . . . . 6  |-  ( ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  ( f  e.  F  /\  g  e.  G
) )  /\  (
v  e.  R  /\  u  e.  S )
)  /\  ( (
( z  e.  C  /\  w  e.  D
)  /\  ( f  e.  F  /\  g  e.  G ) )  /\  ( v  e.  R  /\  u  e.  S
) ) )  /\  ( ( ( x  +h  y )  =  ( v  +h  u
)  /\  ( f  +h  g )  =  ( v  +h  u ) )  /\  ( ( z  +h  w )  =  ( v  +h  u )  /\  (
f  +h  g )  =  ( v  +h  u ) ) ) )  ->  ( (
x  -h  f )  e.  ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  /\  ( z  -h  f )  e.  ( ( ( C  +H  F )  i^i  ( D  +H  G
) )  i^i  (
( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S
) ) ) ) ) )
4943, 48sylanb 458 . . . . 5  |-  ( ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  ( f  e.  F  /\  g  e.  G
) )  /\  (
( z  e.  C  /\  w  e.  D
)  /\  ( f  e.  F  /\  g  e.  G ) ) )  /\  ( v  e.  R  /\  u  e.  S ) )  /\  ( ( ( x  +h  y )  =  ( v  +h  u
)  /\  ( f  +h  g )  =  ( v  +h  u ) )  /\  ( ( z  +h  w )  =  ( v  +h  u )  /\  (
f  +h  g )  =  ( v  +h  u ) ) ) )  ->  ( (
x  -h  f )  e.  ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  /\  ( z  -h  f )  e.  ( ( ( C  +H  F )  i^i  ( D  +H  G
) )  i^i  (
( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S
) ) ) ) ) )
5037, 42, 49syl2an 463 . . . 4  |-  ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( (
f  e.  F  /\  g  e.  G )  /\  ( v  e.  R  /\  u  e.  S
) ) )  /\  ( ( ( x  +h  y )  =  ( v  +h  u
)  /\  ( z  +h  w )  =  ( v  +h  u ) )  /\  ( f  +h  g )  =  ( v  +h  u
) ) )  -> 
( ( x  -h  f )  e.  ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  /\  (
z  -h  f )  e.  ( ( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) )
514, 17shscli 21896 . . . . . . 7  |-  ( A  +H  F )  e.  SH
525, 44shscli 21896 . . . . . . 7  |-  ( B  +H  G )  e.  SH
5351, 52shincli 21941 . . . . . 6  |-  ( ( A  +H  F )  i^i  ( B  +H  G ) )  e.  SH
544, 8shscli 21896 . . . . . . . 8  |-  ( A  +H  R )  e.  SH
555, 9shscli 21896 . . . . . . . 8  |-  ( B  +H  S )  e.  SH
5654, 55shincli 21941 . . . . . . 7  |-  ( ( A  +H  R )  i^i  ( B  +H  S ) )  e.  SH
5717, 8shscli 21896 . . . . . . . 8  |-  ( F  +H  R )  e.  SH
5844, 9shscli 21896 . . . . . . . 8  |-  ( G  +H  S )  e.  SH
5957, 58shincli 21941 . . . . . . 7  |-  ( ( F  +H  R )  i^i  ( G  +H  S ) )  e.  SH
6056, 59shscli 21896 . . . . . 6  |-  ( ( ( A  +H  R
)  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) )  e.  SH
6153, 60shincli 21941 . . . . 5  |-  ( ( ( A  +H  F
)  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  e.  SH
626, 17shscli 21896 . . . . . . 7  |-  ( C  +H  F )  e.  SH
637, 44shscli 21896 . . . . . . 7  |-  ( D  +H  G )  e.  SH
6462, 63shincli 21941 . . . . . 6  |-  ( ( C  +H  F )  i^i  ( D  +H  G ) )  e.  SH
656, 8shscli 21896 . . . . . . . 8  |-  ( C  +H  R )  e.  SH
667, 9shscli 21896 . . . . . . . 8  |-  ( D  +H  S )  e.  SH
6765, 66shincli 21941 . . . . . . 7  |-  ( ( C  +H  R )  i^i  ( D  +H  S ) )  e.  SH
6867, 59shscli 21896 . . . . . 6  |-  ( ( ( C  +H  R
)  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) )  e.  SH
6964, 68shincli 21941 . . . . 5  |-  ( ( ( C  +H  F
)  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  e.  SH
7061, 69shsvsi 21946 . . . 4  |-  ( ( ( x  -h  f
)  e.  ( ( ( A  +H  F
)  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  /\  ( z  -h  f )  e.  ( ( ( C  +H  F )  i^i  ( D  +H  G
) )  i^i  (
( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S
) ) ) ) )  ->  ( (
x  -h  f )  -h  ( z  -h  f ) )  e.  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  +H  ( ( ( C  +H  F
)  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) )
7150, 70syl 15 . . 3  |-  ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( (
f  e.  F  /\  g  e.  G )  /\  ( v  e.  R  /\  u  e.  S
) ) )  /\  ( ( ( x  +h  y )  =  ( v  +h  u
)  /\  ( z  +h  w )  =  ( v  +h  u ) )  /\  ( f  +h  g )  =  ( v  +h  u
) ) )  -> 
( ( x  -h  f )  -h  (
z  -h  f ) )  e.  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) )
7231, 71eqeltrrd 2358 . 2  |-  ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( (
f  e.  F  /\  g  e.  G )  /\  ( v  e.  R  /\  u  e.  S
) ) )  /\  ( ( ( x  +h  y )  =  ( v  +h  u
)  /\  ( z  +h  w )  =  ( v  +h  u ) )  /\  ( f  +h  g )  =  ( v  +h  u
) ) )  -> 
( x  -h  z
)  e.  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) )
73 elin 3358 . 2  |-  ( ( x  -h  z )  e.  ( ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) )  <-> 
( ( x  -h  z )  e.  ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S ) ) ) )  /\  (
x  -h  z )  e.  ( ( ( ( A  +H  F
)  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  +H  ( ( ( C  +H  F
)  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) ) )
7411, 72, 73sylanbrc 645 1  |-  ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( (
f  e.  F  /\  g  e.  G )  /\  ( v  e.  R  /\  u  e.  S
) ) )  /\  ( ( ( x  +h  y )  =  ( v  +h  u
)  /\  ( z  +h  w )  =  ( v  +h  u ) )  /\  ( f  +h  g )  =  ( v  +h  u
) ) )  -> 
( x  -h  z
)  e.  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S ) ) ) )  i^i  (
( ( ( A  +H  F )  i^i  ( B  +H  G
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S
) ) ) )  +H  ( ( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    i^i cin 3151  (class class class)co 5858   ~Hchil 21499    +h cva 21500   0hc0v 21504    -h cmv 21505   SHcsh 21508    +H cph 21511
This theorem is referenced by:  5oalem6  22238
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-hilex 21579  ax-hfvadd 21580  ax-hvcom 21581  ax-hvass 21582  ax-hv0cl 21583  ax-hvaddid 21584  ax-hfvmul 21585  ax-hvmulid 21586  ax-hvmulass 21587  ax-hvdistr1 21588  ax-hvdistr2 21589  ax-hvmul0 21590
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-ltxr 8872  df-sub 9039  df-neg 9040  df-nn 9747  df-grpo 20858  df-ablo 20949  df-hvsub 21551  df-hlim 21552  df-sh 21786  df-ch 21801  df-shs 21887
  Copyright terms: Public domain W3C validator