HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  5oalem6 Unicode version

Theorem 5oalem6 22346
Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 4-May-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
5oalem5.1  |-  A  e.  SH
5oalem5.2  |-  B  e.  SH
5oalem5.3  |-  C  e.  SH
5oalem5.4  |-  D  e.  SH
5oalem5.5  |-  F  e.  SH
5oalem5.6  |-  G  e.  SH
5oalem5.7  |-  R  e.  SH
5oalem5.8  |-  S  e.  SH
Assertion
Ref Expression
5oalem6  |-  ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  h  =  ( x  +h  y ) )  /\  ( ( z  e.  C  /\  w  e.  D )  /\  h  =  ( z  +h  w ) ) )  /\  ( ( ( f  e.  F  /\  g  e.  G )  /\  h  =  (
f  +h  g ) )  /\  ( ( v  e.  R  /\  u  e.  S )  /\  h  =  (
v  +h  u ) ) ) )  ->  h  e.  ( B  +H  ( A  i^i  ( C  +H  ( ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) ) ) ) )

Proof of Theorem 5oalem6
StepHypRef Expression
1 an4 797 . . . 4  |-  ( ( ( ( x  e.  A  /\  y  e.  B )  /\  h  =  ( x  +h  y ) )  /\  ( ( z  e.  C  /\  w  e.  D )  /\  h  =  ( z  +h  w ) ) )  <-> 
( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( h  =  ( x  +h  y )  /\  h  =  ( z  +h  w ) ) ) )
2 an4 797 . . . 4  |-  ( ( ( ( f  e.  F  /\  g  e.  G )  /\  h  =  ( f  +h  g ) )  /\  ( ( v  e.  R  /\  u  e.  S )  /\  h  =  ( v  +h  u ) ) )  <-> 
( ( ( f  e.  F  /\  g  e.  G )  /\  (
v  e.  R  /\  u  e.  S )
)  /\  ( h  =  ( f  +h  g )  /\  h  =  ( v  +h  u ) ) ) )
3 eqeq1 2364 . . . . . . . . . . 11  |-  ( h  =  ( x  +h  y )  ->  (
h  =  ( v  +h  u )  <->  ( x  +h  y )  =  ( v  +h  u ) ) )
43biimpcd 215 . . . . . . . . . 10  |-  ( h  =  ( v  +h  u )  ->  (
h  =  ( x  +h  y )  -> 
( x  +h  y
)  =  ( v  +h  u ) ) )
5 eqeq1 2364 . . . . . . . . . . 11  |-  ( h  =  ( z  +h  w )  ->  (
h  =  ( v  +h  u )  <->  ( z  +h  w )  =  ( v  +h  u ) ) )
65biimpcd 215 . . . . . . . . . 10  |-  ( h  =  ( v  +h  u )  ->  (
h  =  ( z  +h  w )  -> 
( z  +h  w
)  =  ( v  +h  u ) ) )
74, 6anim12d 546 . . . . . . . . 9  |-  ( h  =  ( v  +h  u )  ->  (
( h  =  ( x  +h  y )  /\  h  =  ( z  +h  w ) )  ->  ( (
x  +h  y )  =  ( v  +h  u )  /\  (
z  +h  w )  =  ( v  +h  u ) ) ) )
8 eqeq1 2364 . . . . . . . . . 10  |-  ( h  =  ( f  +h  g )  ->  (
h  =  ( v  +h  u )  <->  ( f  +h  g )  =  ( v  +h  u ) ) )
98biimpcd 215 . . . . . . . . 9  |-  ( h  =  ( v  +h  u )  ->  (
h  =  ( f  +h  g )  -> 
( f  +h  g
)  =  ( v  +h  u ) ) )
107, 9anim12d 546 . . . . . . . 8  |-  ( h  =  ( v  +h  u )  ->  (
( ( h  =  ( x  +h  y
)  /\  h  =  ( z  +h  w
) )  /\  h  =  ( f  +h  g ) )  -> 
( ( ( x  +h  y )  =  ( v  +h  u
)  /\  ( z  +h  w )  =  ( v  +h  u ) )  /\  ( f  +h  g )  =  ( v  +h  u
) ) ) )
1110exp3acom3r 1370 . . . . . . 7  |-  ( ( h  =  ( x  +h  y )  /\  h  =  ( z  +h  w ) )  -> 
( h  =  ( f  +h  g )  ->  ( h  =  ( v  +h  u
)  ->  ( (
( x  +h  y
)  =  ( v  +h  u )  /\  ( z  +h  w
)  =  ( v  +h  u ) )  /\  ( f  +h  g )  =  ( v  +h  u ) ) ) ) )
1211imp32 422 . . . . . 6  |-  ( ( ( h  =  ( x  +h  y )  /\  h  =  ( z  +h  w ) )  /\  ( h  =  ( f  +h  g )  /\  h  =  ( v  +h  u ) ) )  ->  ( ( ( x  +h  y )  =  ( v  +h  u )  /\  (
z  +h  w )  =  ( v  +h  u ) )  /\  ( f  +h  g
)  =  ( v  +h  u ) ) )
1312anim2i 552 . . . . 5  |-  ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( (
f  e.  F  /\  g  e.  G )  /\  ( v  e.  R  /\  u  e.  S
) ) )  /\  ( ( h  =  ( x  +h  y
)  /\  h  =  ( z  +h  w
) )  /\  (
h  =  ( f  +h  g )  /\  h  =  ( v  +h  u ) ) ) )  ->  ( (
( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( (
f  e.  F  /\  g  e.  G )  /\  ( v  e.  R  /\  u  e.  S
) ) )  /\  ( ( ( x  +h  y )  =  ( v  +h  u
)  /\  ( z  +h  w )  =  ( v  +h  u ) )  /\  ( f  +h  g )  =  ( v  +h  u
) ) ) )
1413an4s 799 . . . 4  |-  ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( h  =  ( x  +h  y )  /\  h  =  ( z  +h  w ) ) )  /\  ( ( ( f  e.  F  /\  g  e.  G )  /\  ( v  e.  R  /\  u  e.  S
) )  /\  (
h  =  ( f  +h  g )  /\  h  =  ( v  +h  u ) ) ) )  ->  ( (
( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( (
f  e.  F  /\  g  e.  G )  /\  ( v  e.  R  /\  u  e.  S
) ) )  /\  ( ( ( x  +h  y )  =  ( v  +h  u
)  /\  ( z  +h  w )  =  ( v  +h  u ) )  /\  ( f  +h  g )  =  ( v  +h  u
) ) ) )
151, 2, 14syl2anb 465 . . 3  |-  ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  h  =  ( x  +h  y ) )  /\  ( ( z  e.  C  /\  w  e.  D )  /\  h  =  ( z  +h  w ) ) )  /\  ( ( ( f  e.  F  /\  g  e.  G )  /\  h  =  (
f  +h  g ) )  /\  ( ( v  e.  R  /\  u  e.  S )  /\  h  =  (
v  +h  u ) ) ) )  -> 
( ( ( ( x  e.  A  /\  y  e.  B )  /\  ( z  e.  C  /\  w  e.  D
) )  /\  (
( f  e.  F  /\  g  e.  G
)  /\  ( v  e.  R  /\  u  e.  S ) ) )  /\  ( ( ( x  +h  y )  =  ( v  +h  u )  /\  (
z  +h  w )  =  ( v  +h  u ) )  /\  ( f  +h  g
)  =  ( v  +h  u ) ) ) )
16 5oalem5.1 . . . 4  |-  A  e.  SH
17 5oalem5.2 . . . 4  |-  B  e.  SH
18 5oalem5.3 . . . 4  |-  C  e.  SH
19 5oalem5.4 . . . 4  |-  D  e.  SH
20 5oalem5.5 . . . 4  |-  F  e.  SH
21 5oalem5.6 . . . 4  |-  G  e.  SH
22 5oalem5.7 . . . 4  |-  R  e.  SH
23 5oalem5.8 . . . 4  |-  S  e.  SH
2416, 17, 18, 19, 20, 21, 22, 235oalem5 22345 . . 3  |-  ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( (
f  e.  F  /\  g  e.  G )  /\  ( v  e.  R  /\  u  e.  S
) ) )  /\  ( ( ( x  +h  y )  =  ( v  +h  u
)  /\  ( z  +h  w )  =  ( v  +h  u ) )  /\  ( f  +h  g )  =  ( v  +h  u
) ) )  -> 
( x  -h  z
)  e.  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S ) ) ) )  i^i  (
( ( ( A  +H  F )  i^i  ( B  +H  G
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S
) ) ) )  +H  ( ( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) ) )
2515, 24syl 15 . 2  |-  ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  h  =  ( x  +h  y ) )  /\  ( ( z  e.  C  /\  w  e.  D )  /\  h  =  ( z  +h  w ) ) )  /\  ( ( ( f  e.  F  /\  g  e.  G )  /\  h  =  (
f  +h  g ) )  /\  ( ( v  e.  R  /\  u  e.  S )  /\  h  =  (
v  +h  u ) ) ) )  -> 
( x  -h  z
)  e.  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S ) ) ) )  i^i  (
( ( ( A  +H  F )  i^i  ( B  +H  G
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S
) ) ) )  +H  ( ( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) ) )
2616, 18shscli 22004 . . . . . . . . . 10  |-  ( A  +H  C )  e.  SH
2717, 19shscli 22004 . . . . . . . . . 10  |-  ( B  +H  D )  e.  SH
2826, 27shincli 22049 . . . . . . . . 9  |-  ( ( A  +H  C )  i^i  ( B  +H  D ) )  e.  SH
2916, 22shscli 22004 . . . . . . . . . . 11  |-  ( A  +H  R )  e.  SH
3017, 23shscli 22004 . . . . . . . . . . 11  |-  ( B  +H  S )  e.  SH
3129, 30shincli 22049 . . . . . . . . . 10  |-  ( ( A  +H  R )  i^i  ( B  +H  S ) )  e.  SH
3218, 22shscli 22004 . . . . . . . . . . 11  |-  ( C  +H  R )  e.  SH
3319, 23shscli 22004 . . . . . . . . . . 11  |-  ( D  +H  S )  e.  SH
3432, 33shincli 22049 . . . . . . . . . 10  |-  ( ( C  +H  R )  i^i  ( D  +H  S ) )  e.  SH
3531, 34shscli 22004 . . . . . . . . 9  |-  ( ( ( A  +H  R
)  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S ) ) )  e.  SH
3628, 35shincli 22049 . . . . . . . 8  |-  ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  e.  SH
3716, 20shscli 22004 . . . . . . . . . . 11  |-  ( A  +H  F )  e.  SH
3817, 21shscli 22004 . . . . . . . . . . 11  |-  ( B  +H  G )  e.  SH
3937, 38shincli 22049 . . . . . . . . . 10  |-  ( ( A  +H  F )  i^i  ( B  +H  G ) )  e.  SH
4020, 22shscli 22004 . . . . . . . . . . . 12  |-  ( F  +H  R )  e.  SH
4121, 23shscli 22004 . . . . . . . . . . . 12  |-  ( G  +H  S )  e.  SH
4240, 41shincli 22049 . . . . . . . . . . 11  |-  ( ( F  +H  R )  i^i  ( G  +H  S ) )  e.  SH
4331, 42shscli 22004 . . . . . . . . . 10  |-  ( ( ( A  +H  R
)  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) )  e.  SH
4439, 43shincli 22049 . . . . . . . . 9  |-  ( ( ( A  +H  F
)  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  e.  SH
4518, 20shscli 22004 . . . . . . . . . . 11  |-  ( C  +H  F )  e.  SH
4619, 21shscli 22004 . . . . . . . . . . 11  |-  ( D  +H  G )  e.  SH
4745, 46shincli 22049 . . . . . . . . . 10  |-  ( ( C  +H  F )  i^i  ( D  +H  G ) )  e.  SH
4834, 42shscli 22004 . . . . . . . . . 10  |-  ( ( ( C  +H  R
)  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) )  e.  SH
4947, 48shincli 22049 . . . . . . . . 9  |-  ( ( ( C  +H  F
)  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  e.  SH
5044, 49shscli 22004 . . . . . . . 8  |-  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) )  e.  SH
5136, 50shincli 22049 . . . . . . 7  |-  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S ) ) ) )  i^i  (
( ( ( A  +H  F )  i^i  ( B  +H  G
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S
) ) ) )  +H  ( ( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) )  e.  SH
5216, 17, 18, 515oalem1 22341 . . . . . 6  |-  ( ( ( ( x  e.  A  /\  y  e.  B )  /\  h  =  ( x  +h  y ) )  /\  ( z  e.  C  /\  ( x  -h  z
)  e.  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S ) ) ) )  i^i  (
( ( ( A  +H  F )  i^i  ( B  +H  G
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S
) ) ) )  +H  ( ( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) ) ) )  ->  h  e.  ( B  +H  ( A  i^i  ( C  +H  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) ) ) ) )
5352expr 598 . . . . 5  |-  ( ( ( ( x  e.  A  /\  y  e.  B )  /\  h  =  ( x  +h  y ) )  /\  z  e.  C )  ->  ( ( x  -h  z )  e.  ( ( ( ( A  +H  C )  i^i  ( B  +H  D
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S
) ) ) )  i^i  ( ( ( ( A  +H  F
)  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  +H  ( ( ( C  +H  F
)  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) )  ->  h  e.  ( B  +H  ( A  i^i  ( C  +H  ( ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) ) ) ) ) )
5453adantrr 697 . . . 4  |-  ( ( ( ( x  e.  A  /\  y  e.  B )  /\  h  =  ( x  +h  y ) )  /\  ( z  e.  C  /\  w  e.  D
) )  ->  (
( x  -h  z
)  e.  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S ) ) ) )  i^i  (
( ( ( A  +H  F )  i^i  ( B  +H  G
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S
) ) ) )  +H  ( ( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) )  ->  h  e.  ( B  +H  ( A  i^i  ( C  +H  ( ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) ) ) ) ) )
5554adantrr 697 . . 3  |-  ( ( ( ( x  e.  A  /\  y  e.  B )  /\  h  =  ( x  +h  y ) )  /\  ( ( z  e.  C  /\  w  e.  D )  /\  h  =  ( z  +h  w ) ) )  ->  ( ( x  -h  z )  e.  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) )  ->  h  e.  ( B  +H  ( A  i^i  ( C  +H  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) ) ) ) ) )
5655adantr 451 . 2  |-  ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  h  =  ( x  +h  y ) )  /\  ( ( z  e.  C  /\  w  e.  D )  /\  h  =  ( z  +h  w ) ) )  /\  ( ( ( f  e.  F  /\  g  e.  G )  /\  h  =  (
f  +h  g ) )  /\  ( ( v  e.  R  /\  u  e.  S )  /\  h  =  (
v  +h  u ) ) ) )  -> 
( ( x  -h  z )  e.  ( ( ( ( A  +H  C )  i^i  ( B  +H  D
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S
) ) ) )  i^i  ( ( ( ( A  +H  F
)  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  +H  ( ( ( C  +H  F
)  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) )  ->  h  e.  ( B  +H  ( A  i^i  ( C  +H  ( ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) ) ) ) ) )
5725, 56mpd 14 1  |-  ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  h  =  ( x  +h  y ) )  /\  ( ( z  e.  C  /\  w  e.  D )  /\  h  =  ( z  +h  w ) ) )  /\  ( ( ( f  e.  F  /\  g  e.  G )  /\  h  =  (
f  +h  g ) )  /\  ( ( v  e.  R  /\  u  e.  S )  /\  h  =  (
v  +h  u ) ) ) )  ->  h  e.  ( B  +H  ( A  i^i  ( C  +H  ( ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1642    e. wcel 1710    i^i cin 3227  (class class class)co 5942    +h cva 21608    -h cmv 21613   SHcsh 21616    +H cph 21619
This theorem is referenced by:  5oalem7  22347
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591  ax-cnex 8880  ax-resscn 8881  ax-1cn 8882  ax-icn 8883  ax-addcl 8884  ax-addrcl 8885  ax-mulcl 8886  ax-mulrcl 8887  ax-mulcom 8888  ax-addass 8889  ax-mulass 8890  ax-distr 8891  ax-i2m1 8892  ax-1ne0 8893  ax-1rid 8894  ax-rnegex 8895  ax-rrecex 8896  ax-cnre 8897  ax-pre-lttri 8898  ax-pre-lttrn 8899  ax-pre-ltadd 8900  ax-hilex 21687  ax-hfvadd 21688  ax-hvcom 21689  ax-hvass 21690  ax-hv0cl 21691  ax-hvaddid 21692  ax-hfvmul 21693  ax-hvmulid 21694  ax-hvmulass 21695  ax-hvdistr1 21696  ax-hvdistr2 21697  ax-hvmul0 21698
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-int 3942  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-riota 6388  df-recs 6472  df-rdg 6507  df-er 6744  df-map 6859  df-en 6949  df-dom 6950  df-sdom 6951  df-pnf 8956  df-mnf 8957  df-ltxr 8959  df-sub 9126  df-neg 9127  df-nn 9834  df-grpo 20964  df-ablo 21055  df-hvsub 21659  df-hlim 21660  df-sh 21894  df-ch 21909  df-shs 21995
  Copyright terms: Public domain W3C validator