HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  5oalem7 Structured version   Unicode version

Theorem 5oalem7 23162
Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 4-May-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
5oalem5.1  |-  A  e.  SH
5oalem5.2  |-  B  e.  SH
5oalem5.3  |-  C  e.  SH
5oalem5.4  |-  D  e.  SH
5oalem5.5  |-  F  e.  SH
5oalem5.6  |-  G  e.  SH
5oalem5.7  |-  R  e.  SH
5oalem5.8  |-  S  e.  SH
Assertion
Ref Expression
5oalem7  |-  ( ( ( A  +H  B
)  i^i  ( C  +H  D ) )  i^i  ( ( F  +H  G )  i^i  ( R  +H  S ) ) )  C_  ( B  +H  ( A  i^i  ( C  +H  ( ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) ) ) )

Proof of Theorem 5oalem7
Dummy variables  h  f  g  u  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ee4anv 1940 . . . 4  |-  ( E. x E. y E. f E. g ( E. z E. w
( ( ( x  e.  A  /\  y  e.  B )  /\  h  =  ( x  +h  y ) )  /\  ( ( z  e.  C  /\  w  e.  D )  /\  h  =  ( z  +h  w ) ) )  /\  E. v E. u ( ( ( f  e.  F  /\  g  e.  G )  /\  h  =  (
f  +h  g ) )  /\  ( ( v  e.  R  /\  u  e.  S )  /\  h  =  (
v  +h  u ) ) ) )  <->  ( E. x E. y E. z E. w ( ( ( x  e.  A  /\  y  e.  B )  /\  h  =  (
x  +h  y ) )  /\  ( ( z  e.  C  /\  w  e.  D )  /\  h  =  (
z  +h  w ) ) )  /\  E. f E. g E. v E. u ( ( ( f  e.  F  /\  g  e.  G )  /\  h  =  (
f  +h  g ) )  /\  ( ( v  e.  R  /\  u  e.  S )  /\  h  =  (
v  +h  u ) ) ) ) )
2 exrot4 1760 . . . . . 6  |-  ( E. z E. w E. f E. g E. v E. u ( ( ( ( x  e.  A  /\  y  e.  B
)  /\  h  =  ( x  +h  y
) )  /\  (
( z  e.  C  /\  w  e.  D
)  /\  h  =  ( z  +h  w
) ) )  /\  ( ( ( f  e.  F  /\  g  e.  G )  /\  h  =  ( f  +h  g ) )  /\  ( ( v  e.  R  /\  u  e.  S )  /\  h  =  ( v  +h  u ) ) ) )  <->  E. f E. g E. z E. w E. v E. u ( ( ( ( x  e.  A  /\  y  e.  B )  /\  h  =  ( x  +h  y ) )  /\  ( ( z  e.  C  /\  w  e.  D )  /\  h  =  ( z  +h  w ) ) )  /\  ( ( ( f  e.  F  /\  g  e.  G )  /\  h  =  (
f  +h  g ) )  /\  ( ( v  e.  R  /\  u  e.  S )  /\  h  =  (
v  +h  u ) ) ) ) )
3 ee4anv 1940 . . . . . . 7  |-  ( E. z E. w E. v E. u ( ( ( ( x  e.  A  /\  y  e.  B )  /\  h  =  ( x  +h  y ) )  /\  ( ( z  e.  C  /\  w  e.  D )  /\  h  =  ( z  +h  w ) ) )  /\  ( ( ( f  e.  F  /\  g  e.  G )  /\  h  =  (
f  +h  g ) )  /\  ( ( v  e.  R  /\  u  e.  S )  /\  h  =  (
v  +h  u ) ) ) )  <->  ( E. z E. w ( ( ( x  e.  A  /\  y  e.  B
)  /\  h  =  ( x  +h  y
) )  /\  (
( z  e.  C  /\  w  e.  D
)  /\  h  =  ( z  +h  w
) ) )  /\  E. v E. u ( ( ( f  e.  F  /\  g  e.  G )  /\  h  =  ( f  +h  g ) )  /\  ( ( v  e.  R  /\  u  e.  S )  /\  h  =  ( v  +h  u ) ) ) ) )
432exbii 1593 . . . . . 6  |-  ( E. f E. g E. z E. w E. v E. u ( ( ( ( x  e.  A  /\  y  e.  B )  /\  h  =  ( x  +h  y ) )  /\  ( ( z  e.  C  /\  w  e.  D )  /\  h  =  ( z  +h  w ) ) )  /\  ( ( ( f  e.  F  /\  g  e.  G )  /\  h  =  (
f  +h  g ) )  /\  ( ( v  e.  R  /\  u  e.  S )  /\  h  =  (
v  +h  u ) ) ) )  <->  E. f E. g ( E. z E. w ( ( ( x  e.  A  /\  y  e.  B )  /\  h  =  (
x  +h  y ) )  /\  ( ( z  e.  C  /\  w  e.  D )  /\  h  =  (
z  +h  w ) ) )  /\  E. v E. u ( ( ( f  e.  F  /\  g  e.  G
)  /\  h  =  ( f  +h  g
) )  /\  (
( v  e.  R  /\  u  e.  S
)  /\  h  =  ( v  +h  u
) ) ) ) )
52, 4bitri 241 . . . . 5  |-  ( E. z E. w E. f E. g E. v E. u ( ( ( ( x  e.  A  /\  y  e.  B
)  /\  h  =  ( x  +h  y
) )  /\  (
( z  e.  C  /\  w  e.  D
)  /\  h  =  ( z  +h  w
) ) )  /\  ( ( ( f  e.  F  /\  g  e.  G )  /\  h  =  ( f  +h  g ) )  /\  ( ( v  e.  R  /\  u  e.  S )  /\  h  =  ( v  +h  u ) ) ) )  <->  E. f E. g
( E. z E. w ( ( ( x  e.  A  /\  y  e.  B )  /\  h  =  (
x  +h  y ) )  /\  ( ( z  e.  C  /\  w  e.  D )  /\  h  =  (
z  +h  w ) ) )  /\  E. v E. u ( ( ( f  e.  F  /\  g  e.  G
)  /\  h  =  ( f  +h  g
) )  /\  (
( v  e.  R  /\  u  e.  S
)  /\  h  =  ( v  +h  u
) ) ) ) )
652exbii 1593 . . . 4  |-  ( E. x E. y E. z E. w E. f E. g E. v E. u ( ( ( ( x  e.  A  /\  y  e.  B
)  /\  h  =  ( x  +h  y
) )  /\  (
( z  e.  C  /\  w  e.  D
)  /\  h  =  ( z  +h  w
) ) )  /\  ( ( ( f  e.  F  /\  g  e.  G )  /\  h  =  ( f  +h  g ) )  /\  ( ( v  e.  R  /\  u  e.  S )  /\  h  =  ( v  +h  u ) ) ) )  <->  E. x E. y E. f E. g ( E. z E. w
( ( ( x  e.  A  /\  y  e.  B )  /\  h  =  ( x  +h  y ) )  /\  ( ( z  e.  C  /\  w  e.  D )  /\  h  =  ( z  +h  w ) ) )  /\  E. v E. u ( ( ( f  e.  F  /\  g  e.  G )  /\  h  =  (
f  +h  g ) )  /\  ( ( v  e.  R  /\  u  e.  S )  /\  h  =  (
v  +h  u ) ) ) ) )
7 elin 3530 . . . . 5  |-  ( h  e.  ( ( ( A  +H  B )  i^i  ( C  +H  D ) )  i^i  ( ( F  +H  G )  i^i  ( R  +H  S ) ) )  <->  ( h  e.  ( ( A  +H  B )  i^i  ( C  +H  D ) )  /\  h  e.  ( ( F  +H  G
)  i^i  ( R  +H  S ) ) ) )
8 5oalem5.1 . . . . . . . . . 10  |-  A  e.  SH
9 5oalem5.2 . . . . . . . . . 10  |-  B  e.  SH
108, 9shseli 22818 . . . . . . . . 9  |-  ( h  e.  ( A  +H  B )  <->  E. x  e.  A  E. y  e.  B  h  =  ( x  +h  y
) )
11 r2ex 2743 . . . . . . . . 9  |-  ( E. x  e.  A  E. y  e.  B  h  =  ( x  +h  y )  <->  E. x E. y ( ( x  e.  A  /\  y  e.  B )  /\  h  =  ( x  +h  y ) ) )
1210, 11bitri 241 . . . . . . . 8  |-  ( h  e.  ( A  +H  B )  <->  E. x E. y ( ( x  e.  A  /\  y  e.  B )  /\  h  =  ( x  +h  y ) ) )
13 5oalem5.3 . . . . . . . . . 10  |-  C  e.  SH
14 5oalem5.4 . . . . . . . . . 10  |-  D  e.  SH
1513, 14shseli 22818 . . . . . . . . 9  |-  ( h  e.  ( C  +H  D )  <->  E. z  e.  C  E. w  e.  D  h  =  ( z  +h  w
) )
16 r2ex 2743 . . . . . . . . 9  |-  ( E. z  e.  C  E. w  e.  D  h  =  ( z  +h  w )  <->  E. z E. w ( ( z  e.  C  /\  w  e.  D )  /\  h  =  ( z  +h  w ) ) )
1715, 16bitri 241 . . . . . . . 8  |-  ( h  e.  ( C  +H  D )  <->  E. z E. w ( ( z  e.  C  /\  w  e.  D )  /\  h  =  ( z  +h  w ) ) )
1812, 17anbi12i 679 . . . . . . 7  |-  ( ( h  e.  ( A  +H  B )  /\  h  e.  ( C  +H  D ) )  <->  ( E. x E. y ( ( x  e.  A  /\  y  e.  B )  /\  h  =  (
x  +h  y ) )  /\  E. z E. w ( ( z  e.  C  /\  w  e.  D )  /\  h  =  ( z  +h  w ) ) ) )
19 elin 3530 . . . . . . 7  |-  ( h  e.  ( ( A  +H  B )  i^i  ( C  +H  D
) )  <->  ( h  e.  ( A  +H  B
)  /\  h  e.  ( C  +H  D
) ) )
20 ee4anv 1940 . . . . . . 7  |-  ( E. x E. y E. z E. w ( ( ( x  e.  A  /\  y  e.  B )  /\  h  =  ( x  +h  y ) )  /\  ( ( z  e.  C  /\  w  e.  D )  /\  h  =  ( z  +h  w ) ) )  <-> 
( E. x E. y ( ( x  e.  A  /\  y  e.  B )  /\  h  =  ( x  +h  y ) )  /\  E. z E. w ( ( z  e.  C  /\  w  e.  D
)  /\  h  =  ( z  +h  w
) ) ) )
2118, 19, 203bitr4ri 270 . . . . . 6  |-  ( E. x E. y E. z E. w ( ( ( x  e.  A  /\  y  e.  B )  /\  h  =  ( x  +h  y ) )  /\  ( ( z  e.  C  /\  w  e.  D )  /\  h  =  ( z  +h  w ) ) )  <-> 
h  e.  ( ( A  +H  B )  i^i  ( C  +H  D ) ) )
22 5oalem5.5 . . . . . . . . . 10  |-  F  e.  SH
23 5oalem5.6 . . . . . . . . . 10  |-  G  e.  SH
2422, 23shseli 22818 . . . . . . . . 9  |-  ( h  e.  ( F  +H  G )  <->  E. f  e.  F  E. g  e.  G  h  =  ( f  +h  g
) )
25 r2ex 2743 . . . . . . . . 9  |-  ( E. f  e.  F  E. g  e.  G  h  =  ( f  +h  g )  <->  E. f E. g ( ( f  e.  F  /\  g  e.  G )  /\  h  =  ( f  +h  g ) ) )
2624, 25bitri 241 . . . . . . . 8  |-  ( h  e.  ( F  +H  G )  <->  E. f E. g ( ( f  e.  F  /\  g  e.  G )  /\  h  =  ( f  +h  g ) ) )
27 5oalem5.7 . . . . . . . . . 10  |-  R  e.  SH
28 5oalem5.8 . . . . . . . . . 10  |-  S  e.  SH
2927, 28shseli 22818 . . . . . . . . 9  |-  ( h  e.  ( R  +H  S )  <->  E. v  e.  R  E. u  e.  S  h  =  ( v  +h  u
) )
30 r2ex 2743 . . . . . . . . 9  |-  ( E. v  e.  R  E. u  e.  S  h  =  ( v  +h  u )  <->  E. v E. u ( ( v  e.  R  /\  u  e.  S )  /\  h  =  ( v  +h  u ) ) )
3129, 30bitri 241 . . . . . . . 8  |-  ( h  e.  ( R  +H  S )  <->  E. v E. u ( ( v  e.  R  /\  u  e.  S )  /\  h  =  ( v  +h  u ) ) )
3226, 31anbi12i 679 . . . . . . 7  |-  ( ( h  e.  ( F  +H  G )  /\  h  e.  ( R  +H  S ) )  <->  ( E. f E. g ( ( f  e.  F  /\  g  e.  G )  /\  h  =  (
f  +h  g ) )  /\  E. v E. u ( ( v  e.  R  /\  u  e.  S )  /\  h  =  ( v  +h  u ) ) ) )
33 elin 3530 . . . . . . 7  |-  ( h  e.  ( ( F  +H  G )  i^i  ( R  +H  S
) )  <->  ( h  e.  ( F  +H  G
)  /\  h  e.  ( R  +H  S
) ) )
34 ee4anv 1940 . . . . . . 7  |-  ( E. f E. g E. v E. u ( ( ( f  e.  F  /\  g  e.  G )  /\  h  =  ( f  +h  g ) )  /\  ( ( v  e.  R  /\  u  e.  S )  /\  h  =  ( v  +h  u ) ) )  <-> 
( E. f E. g ( ( f  e.  F  /\  g  e.  G )  /\  h  =  ( f  +h  g ) )  /\  E. v E. u ( ( v  e.  R  /\  u  e.  S
)  /\  h  =  ( v  +h  u
) ) ) )
3532, 33, 343bitr4ri 270 . . . . . 6  |-  ( E. f E. g E. v E. u ( ( ( f  e.  F  /\  g  e.  G )  /\  h  =  ( f  +h  g ) )  /\  ( ( v  e.  R  /\  u  e.  S )  /\  h  =  ( v  +h  u ) ) )  <-> 
h  e.  ( ( F  +H  G )  i^i  ( R  +H  S ) ) )
3621, 35anbi12i 679 . . . . 5  |-  ( ( E. x E. y E. z E. w ( ( ( x  e.  A  /\  y  e.  B )  /\  h  =  ( x  +h  y ) )  /\  ( ( z  e.  C  /\  w  e.  D )  /\  h  =  ( z  +h  w ) ) )  /\  E. f E. g E. v E. u ( ( ( f  e.  F  /\  g  e.  G )  /\  h  =  (
f  +h  g ) )  /\  ( ( v  e.  R  /\  u  e.  S )  /\  h  =  (
v  +h  u ) ) ) )  <->  ( h  e.  ( ( A  +H  B )  i^i  ( C  +H  D ) )  /\  h  e.  ( ( F  +H  G
)  i^i  ( R  +H  S ) ) ) )
377, 36bitr4i 244 . . . 4  |-  ( h  e.  ( ( ( A  +H  B )  i^i  ( C  +H  D ) )  i^i  ( ( F  +H  G )  i^i  ( R  +H  S ) ) )  <->  ( E. x E. y E. z E. w ( ( ( x  e.  A  /\  y  e.  B )  /\  h  =  (
x  +h  y ) )  /\  ( ( z  e.  C  /\  w  e.  D )  /\  h  =  (
z  +h  w ) ) )  /\  E. f E. g E. v E. u ( ( ( f  e.  F  /\  g  e.  G )  /\  h  =  (
f  +h  g ) )  /\  ( ( v  e.  R  /\  u  e.  S )  /\  h  =  (
v  +h  u ) ) ) ) )
381, 6, 373bitr4ri 270 . . 3  |-  ( h  e.  ( ( ( A  +H  B )  i^i  ( C  +H  D ) )  i^i  ( ( F  +H  G )  i^i  ( R  +H  S ) ) )  <->  E. x E. y E. z E. w E. f E. g E. v E. u ( ( ( ( x  e.  A  /\  y  e.  B
)  /\  h  =  ( x  +h  y
) )  /\  (
( z  e.  C  /\  w  e.  D
)  /\  h  =  ( z  +h  w
) ) )  /\  ( ( ( f  e.  F  /\  g  e.  G )  /\  h  =  ( f  +h  g ) )  /\  ( ( v  e.  R  /\  u  e.  S )  /\  h  =  ( v  +h  u ) ) ) ) )
398, 9, 13, 14, 22, 23, 27, 285oalem6 23161 . . . . . . 7  |-  ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  h  =  ( x  +h  y ) )  /\  ( ( z  e.  C  /\  w  e.  D )  /\  h  =  ( z  +h  w ) ) )  /\  ( ( ( f  e.  F  /\  g  e.  G )  /\  h  =  (
f  +h  g ) )  /\  ( ( v  e.  R  /\  u  e.  S )  /\  h  =  (
v  +h  u ) ) ) )  ->  h  e.  ( B  +H  ( A  i^i  ( C  +H  ( ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) ) ) ) )
4039exlimivv 1645 . . . . . 6  |-  ( E. v E. u ( ( ( ( x  e.  A  /\  y  e.  B )  /\  h  =  ( x  +h  y ) )  /\  ( ( z  e.  C  /\  w  e.  D )  /\  h  =  ( z  +h  w ) ) )  /\  ( ( ( f  e.  F  /\  g  e.  G )  /\  h  =  (
f  +h  g ) )  /\  ( ( v  e.  R  /\  u  e.  S )  /\  h  =  (
v  +h  u ) ) ) )  ->  h  e.  ( B  +H  ( A  i^i  ( C  +H  ( ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) ) ) ) )
4140exlimivv 1645 . . . . 5  |-  ( E. f E. g E. v E. u ( ( ( ( x  e.  A  /\  y  e.  B )  /\  h  =  ( x  +h  y ) )  /\  ( ( z  e.  C  /\  w  e.  D )  /\  h  =  ( z  +h  w ) ) )  /\  ( ( ( f  e.  F  /\  g  e.  G )  /\  h  =  (
f  +h  g ) )  /\  ( ( v  e.  R  /\  u  e.  S )  /\  h  =  (
v  +h  u ) ) ) )  ->  h  e.  ( B  +H  ( A  i^i  ( C  +H  ( ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) ) ) ) )
4241exlimivv 1645 . . . 4  |-  ( E. z E. w E. f E. g E. v E. u ( ( ( ( x  e.  A  /\  y  e.  B
)  /\  h  =  ( x  +h  y
) )  /\  (
( z  e.  C  /\  w  e.  D
)  /\  h  =  ( z  +h  w
) ) )  /\  ( ( ( f  e.  F  /\  g  e.  G )  /\  h  =  ( f  +h  g ) )  /\  ( ( v  e.  R  /\  u  e.  S )  /\  h  =  ( v  +h  u ) ) ) )  ->  h  e.  ( B  +H  ( A  i^i  ( C  +H  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) ) ) ) )
4342exlimivv 1645 . . 3  |-  ( E. x E. y E. z E. w E. f E. g E. v E. u ( ( ( ( x  e.  A  /\  y  e.  B
)  /\  h  =  ( x  +h  y
) )  /\  (
( z  e.  C  /\  w  e.  D
)  /\  h  =  ( z  +h  w
) ) )  /\  ( ( ( f  e.  F  /\  g  e.  G )  /\  h  =  ( f  +h  g ) )  /\  ( ( v  e.  R  /\  u  e.  S )  /\  h  =  ( v  +h  u ) ) ) )  ->  h  e.  ( B  +H  ( A  i^i  ( C  +H  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) ) ) ) )
4438, 43sylbi 188 . 2  |-  ( h  e.  ( ( ( A  +H  B )  i^i  ( C  +H  D ) )  i^i  ( ( F  +H  G )  i^i  ( R  +H  S ) ) )  ->  h  e.  ( B  +H  ( A  i^i  ( C  +H  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) ) ) ) )
4544ssriv 3352 1  |-  ( ( ( A  +H  B
)  i^i  ( C  +H  D ) )  i^i  ( ( F  +H  G )  i^i  ( R  +H  S ) ) )  C_  ( B  +H  ( A  i^i  ( C  +H  ( ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   E.wrex 2706    i^i cin 3319    C_ wss 3320  (class class class)co 6081    +h cva 22423   SHcsh 22431    +H cph 22434
This theorem is referenced by:  5oai  23163
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-hilex 22502  ax-hfvadd 22503  ax-hvcom 22504  ax-hvass 22505  ax-hv0cl 22506  ax-hvaddid 22507  ax-hfvmul 22508  ax-hvmulid 22509  ax-hvmulass 22510  ax-hvdistr1 22511  ax-hvdistr2 22512  ax-hvmul0 22513
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-ltxr 9125  df-sub 9293  df-neg 9294  df-nn 10001  df-grpo 21779  df-ablo 21870  df-hvsub 22474  df-hlim 22475  df-sh 22709  df-ch 22724  df-shs 22810
  Copyright terms: Public domain W3C validator