MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  5p1e6 Unicode version

Theorem 5p1e6 9850
Description: 5 + 1 = 6. (Contributed by Mario Carneiro, 18-Apr-2015.)
Assertion
Ref Expression
5p1e6  |-  ( 5  +  1 )  =  6

Proof of Theorem 5p1e6
StepHypRef Expression
1 df-6 9808 . 2  |-  6  =  ( 5  +  1 )
21eqcomi 2287 1  |-  ( 5  +  1 )  =  6
Colors of variables: wff set class
Syntax hints:    = wceq 1623  (class class class)co 5858   1c1 8738    + caddc 8740   5c5 9798   6c6 9799
This theorem is referenced by:  8t8e64  10218  9t7e63  10224  s6len  11544  2exp6  13101  163prm  13126  631prm  13128  1259lem1  13129  1259lem3  13131  1259lem4  13132  2503lem1  13135  2503lem2  13136  4001lem1  13139  4001lem4  13142  4001prm  13143  log2ublem3  20244  log2ub  20245  5recm6rec  24101
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-cleq 2276  df-6 9808
  Copyright terms: Public domain W3C validator