MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  5t5e25 Unicode version

Theorem 5t5e25 10247
Description: 5 times 5 equals 25. (Contributed by Mario Carneiro, 19-Apr-2015.)
Assertion
Ref Expression
5t5e25  |-  ( 5  x.  5 )  = ; 2
5

Proof of Theorem 5t5e25
StepHypRef Expression
1 5nn0 10032 . 2  |-  5  e.  NN0
2 4nn0 10031 . 2  |-  4  e.  NN0
3 df-5 9852 . 2  |-  5  =  ( 4  +  1 )
4 5t4e20 10246 . . 3  |-  ( 5  x.  4 )  = ; 2
0
5 2nn0 10029 . . . 4  |-  2  e.  NN0
65dec0u 10186 . . 3  |-  ( 10  x.  2 )  = ; 2
0
74, 6eqtr4i 2339 . 2  |-  ( 5  x.  4 )  =  ( 10  x.  2 )
8 df-dec 10172 . . 3  |- ; 2 5  =  ( ( 10  x.  2 )  +  5 )
98eqcomi 2320 . 2  |-  ( ( 10  x.  2 )  +  5 )  = ; 2
5
101, 2, 3, 7, 94t3lem 10242 1  |-  ( 5  x.  5 )  = ; 2
5
Colors of variables: wff set class
Syntax hints:    = wceq 1633  (class class class)co 5900   0cc0 8782    + caddc 8785    x. cmul 8787   2c2 9840   4c4 9842   5c5 9843   10c10 9848  ;cdc 10171
This theorem is referenced by:  2exp16  13150  prmlem1  13156  prmlem2  13168  1259lem1  13176  1259lem4  13179  2503lem1  13182  2503lem2  13183  4001lem1  13186  4001prm  13190
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-riota 6346  df-recs 6430  df-rdg 6465  df-er 6702  df-en 6907  df-dom 6908  df-sdom 6909  df-pnf 8914  df-mnf 8915  df-ltxr 8917  df-sub 9084  df-nn 9792  df-2 9849  df-3 9850  df-4 9851  df-5 9852  df-6 9853  df-7 9854  df-8 9855  df-9 9856  df-10 9857  df-n0 10013  df-dec 10172
  Copyright terms: Public domain W3C validator