MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  6p1e7 Unicode version

Theorem 6p1e7 9851
Description: 6 + 1 = 7. (Contributed by Mario Carneiro, 18-Apr-2015.)
Assertion
Ref Expression
6p1e7  |-  ( 6  +  1 )  =  7

Proof of Theorem 6p1e7
StepHypRef Expression
1 df-7 9809 . 2  |-  7  =  ( 6  +  1 )
21eqcomi 2287 1  |-  ( 6  +  1 )  =  7
Colors of variables: wff set class
Syntax hints:    = wceq 1623  (class class class)co 5858   1c1 8738    + caddc 8740   6c6 9799   7c7 9800
This theorem is referenced by:  9t8e72  10225  s7len  11545  37prm  13122  163prm  13126  317prm  13127  631prm  13128  1259lem1  13129  1259lem3  13131  1259lem4  13132  1259lem5  13133  2503lem1  13135  2503lem2  13136  2503lem3  13137  2503prm  13138  4001lem1  13139  4001lem4  13142  4001prm  13143  log2ublem3  20244  log2ub  20245
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-cleq 2276  df-7 9809
  Copyright terms: Public domain W3C validator