Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  a12stdy1 Unicode version

Theorem a12stdy1 29126
Description: Part of a study related to ax12o 1875. The consequent introduces a new variable  z. There are no distinct variable restrictions. (Contributed by NM, 14-Jan-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
a12stdy1  |-  ( A. x  x  =  y  ->  E. x  y  =  z )

Proof of Theorem a12stdy1
StepHypRef Expression
1 a9e 1891 . 2  |-  E. y 
y  =  z
2 ax10o 1892 . . . 4  |-  ( A. x  x  =  y  ->  ( A. x  -.  y  =  z  ->  A. y  -.  y  =  z ) )
32con3d 125 . . 3  |-  ( A. x  x  =  y  ->  ( -.  A. y  -.  y  =  z  ->  -.  A. x  -.  y  =  z )
)
4 df-ex 1529 . . 3  |-  ( E. y  y  =  z  <->  -.  A. y  -.  y  =  z )
5 df-ex 1529 . . 3  |-  ( E. x  y  =  z  <->  -.  A. x  -.  y  =  z )
63, 4, 53imtr4g 261 . 2  |-  ( A. x  x  =  y  ->  ( E. y  y  =  z  ->  E. x  y  =  z )
)
71, 6mpi 16 1  |-  ( A. x  x  =  y  ->  E. x  y  =  z )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1527   E.wex 1528
This theorem is referenced by:  a12stdy3  29128
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529
  Copyright terms: Public domain W3C validator