MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  a16g-o Unicode version

Theorem a16g-o 2125
Description: A generalization of axiom ax-16 2083. Version of a16g 1885 using ax-10o 2078. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
a16g-o  |-  ( A. x  x  =  y  ->  ( ph  ->  A. z ph ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem a16g-o
StepHypRef Expression
1 aev-o 2121 . 2  |-  ( A. x  x  =  y  ->  A. z  z  =  x )
2 ax-16 2083 . 2  |-  ( A. x  x  =  y  ->  ( ph  ->  A. x ph ) )
3 biidd 228 . . . 4  |-  ( A. z  z  =  x  ->  ( ph  <->  ph ) )
43dral1-o 2093 . . 3  |-  ( A. z  z  =  x  ->  ( A. z ph  <->  A. x ph ) )
54biimprd 214 . 2  |-  ( A. z  z  =  x  ->  ( A. x ph  ->  A. z ph )
)
61, 2, 5sylsyld 52 1  |-  ( A. x  x  =  y  ->  ( ph  ->  A. z ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1527
This theorem is referenced by:  ax11inda2  2138
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-4 2074  ax-5o 2075  ax-6o 2076  ax-10o 2078  ax-12o 2081  ax-16 2083
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532
  Copyright terms: Public domain W3C validator