MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  a1tru Unicode version

Theorem a1tru 1321
Description: Anything implies  T.. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Anthony Hart, 1-Aug-2011.)
Assertion
Ref Expression
a1tru  |-  ( ph  ->  T.  )

Proof of Theorem a1tru
StepHypRef Expression
1 tru 1312 . 2  |-  T.
21a1i 10 1  |-  ( ph  ->  T.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    T. wtru 1307
This theorem is referenced by:  disjprg  4019  euotd  4267  elabrex  5765  riota5f  6329  trcrm  24951  lhpexle1  30197
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-tru 1310
  Copyright terms: Public domain W3C validator