MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  a5i Unicode version

Theorem a5i 1758
Description: Inference version of ax5o 1717. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
a5i.1  |-  ( A. x ph  ->  ps )
Assertion
Ref Expression
a5i  |-  ( A. x ph  ->  A. x ps )

Proof of Theorem a5i
StepHypRef Expression
1 nfa1 1756 . 2  |-  F/ x A. x ph
2 a5i.1 . 2  |-  ( A. x ph  ->  ps )
31, 2alrimi 1745 1  |-  ( A. x ph  ->  A. x ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1527
This theorem is referenced by:  hbae  1893  hbsb2a  1981  hbsb2e  1982  hbsb2  1997  reu6  2954  axunndlem1  8217  axregnd  8226  axacndlem3  8231  axacndlem5  8233  axacnd  8234  pm11.57  27588  pm11.59  27590  ax4567to6  27604  ax10ext  27606  hbalg  28321  a9e2eq  28323  a9e2eqVD  28683  a12studyALT  29133  a12study3  29135
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-11 1715
This theorem depends on definitions:  df-bi 177  df-nf 1532
  Copyright terms: Public domain W3C validator